Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spreading Cancer Survives Via Signals From Nearby Blood Vessels Long Before New Vessels Are Grown

19.12.2003


In one of the clearest models of cancer metastasis, scientists have shown that spreading cancer cells receive growth-sustaining signals from nearby blood vessels telling them where to go for permanent nourishment and oxygen.



These signals actually protect the fledgling cancer cells long before new blood vessels have grown around the cancer to supply it with a more permanent source of nutrients and oxygen, said the researchers from the Duke Comprehensive Cancer Center.

Their results will be published in the Dec. 19, 2003, issue of the Federation of American Societies for Experimental Biology Journal.


"We’ve demonstrated a give and take relationship in which cancer cells release signals to nearby blood vessels to stimulate new vessel growth, and in turn, blood vessels release signals that sustain the migrating cancer cells as they try to establish themselves in new tissue," said Duke cancer biologist Mark Dewhirst, Ph.D.

Dewhirst said his findings present a model of the earliest stages of cancer metastasis, and they bolster medicine’s latest strategy of blocking blood vessel growth as a means of inhibiting cancer’s spread.

Scientists have long known that tumors secrete proteins which promote the growth of new blood vessels to sustain the tumor’s continued growth. What they didn’t realize is that endothelial cells that line the blood vessels are also releasing signals back to the cancer cells that protect the cancer cells from dying and direct them to grow toward the blood vessel.

In fact, the cancer cells respond to the endothelial cells’ messages by elongating and stretching toward the blood vessel in a column formation, their study showed. This change occurs within days after the cancer cells are implanted in the tissue, and long before new blood vessels have begun to form.

"Our data show that blood vessel endothelial cells are involved in cancer survival and growth at a far earlier stage than we had originally believed," said Dewhirst. "This discovery energizes our efforts to block these signals from being released and to inhibit new blood vessels from forming." Such a strategy is called anti-angiogenesis.

The two-way dialogue begins when cancer cells secrete proteins -- such as vascular endothelial growth factor (VEGF) and angiopoietin 2 -- that alert blood vessels to their presence. These proteins prime the blood vessels to initiate new blood vessel growth.

In response, blood vessel endothelial cells release numerous growth and survival factors that sustain the tumor’s survival and invasion of the tissue, the study indicated.

Dewhirst’s team demonstrated this two-way dialogue between cancer cells and blood vessels by testing how certain signals affected cancer cells in the test tube and in animals. They found that:

* a signal called bFGF (also known as a cytokine) known to promote cancer cell survival in the body had no effect on cancer cells in a test tube. This finding shows that bFGF is not directly acting on cancer cells, but instead it is signaling another player -- probably endothelial cells in blood vessels -- to induce cancer cell growth.

* the cancer cell models in the current study do not even have bFGF receptors -- docking sites for proteins to bind to and activate a reaction inside the cell. Without a bFGF receptor, the bFGF protein cannot directly communicate the cancer cell.

* when scientists prevented cancer cells from utilizing VEGF -- a protein that prompts blood vessel growth –- they inhibited cancer cell survival and growth long before new blood vessels had begun to grow.

* by blocking a vessel-growth protein receptor called Tie2, the scientists inhibited cancer cell survival long before new blood vessels had begun to grow. This suggests that Tie2 is also involved in promoting cancer survival, not just blood vessel growth.

Dewhirst said these findings will help them block the earliest stages of cancer metastasis -– or spreading from the primary tumor site –- because they demonstrate how the fledgling metastatic cancer cell adapt and survive in their new environment.

contact sources :
Mark Dewhirst DVM, PhD ,
(919) 684-4180
dewhirst@radonc.duke.edu

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7305

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>