Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spreading Cancer Survives Via Signals From Nearby Blood Vessels Long Before New Vessels Are Grown

19.12.2003


In one of the clearest models of cancer metastasis, scientists have shown that spreading cancer cells receive growth-sustaining signals from nearby blood vessels telling them where to go for permanent nourishment and oxygen.



These signals actually protect the fledgling cancer cells long before new blood vessels have grown around the cancer to supply it with a more permanent source of nutrients and oxygen, said the researchers from the Duke Comprehensive Cancer Center.

Their results will be published in the Dec. 19, 2003, issue of the Federation of American Societies for Experimental Biology Journal.


"We’ve demonstrated a give and take relationship in which cancer cells release signals to nearby blood vessels to stimulate new vessel growth, and in turn, blood vessels release signals that sustain the migrating cancer cells as they try to establish themselves in new tissue," said Duke cancer biologist Mark Dewhirst, Ph.D.

Dewhirst said his findings present a model of the earliest stages of cancer metastasis, and they bolster medicine’s latest strategy of blocking blood vessel growth as a means of inhibiting cancer’s spread.

Scientists have long known that tumors secrete proteins which promote the growth of new blood vessels to sustain the tumor’s continued growth. What they didn’t realize is that endothelial cells that line the blood vessels are also releasing signals back to the cancer cells that protect the cancer cells from dying and direct them to grow toward the blood vessel.

In fact, the cancer cells respond to the endothelial cells’ messages by elongating and stretching toward the blood vessel in a column formation, their study showed. This change occurs within days after the cancer cells are implanted in the tissue, and long before new blood vessels have begun to form.

"Our data show that blood vessel endothelial cells are involved in cancer survival and growth at a far earlier stage than we had originally believed," said Dewhirst. "This discovery energizes our efforts to block these signals from being released and to inhibit new blood vessels from forming." Such a strategy is called anti-angiogenesis.

The two-way dialogue begins when cancer cells secrete proteins -- such as vascular endothelial growth factor (VEGF) and angiopoietin 2 -- that alert blood vessels to their presence. These proteins prime the blood vessels to initiate new blood vessel growth.

In response, blood vessel endothelial cells release numerous growth and survival factors that sustain the tumor’s survival and invasion of the tissue, the study indicated.

Dewhirst’s team demonstrated this two-way dialogue between cancer cells and blood vessels by testing how certain signals affected cancer cells in the test tube and in animals. They found that:

* a signal called bFGF (also known as a cytokine) known to promote cancer cell survival in the body had no effect on cancer cells in a test tube. This finding shows that bFGF is not directly acting on cancer cells, but instead it is signaling another player -- probably endothelial cells in blood vessels -- to induce cancer cell growth.

* the cancer cell models in the current study do not even have bFGF receptors -- docking sites for proteins to bind to and activate a reaction inside the cell. Without a bFGF receptor, the bFGF protein cannot directly communicate the cancer cell.

* when scientists prevented cancer cells from utilizing VEGF -- a protein that prompts blood vessel growth –- they inhibited cancer cell survival and growth long before new blood vessels had begun to grow.

* by blocking a vessel-growth protein receptor called Tie2, the scientists inhibited cancer cell survival long before new blood vessels had begun to grow. This suggests that Tie2 is also involved in promoting cancer survival, not just blood vessel growth.

Dewhirst said these findings will help them block the earliest stages of cancer metastasis -– or spreading from the primary tumor site –- because they demonstrate how the fledgling metastatic cancer cell adapt and survive in their new environment.

contact sources :
Mark Dewhirst DVM, PhD ,
(919) 684-4180
dewhirst@radonc.duke.edu

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7305

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>