Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailored dosage of chemotherapy effective in treating breast cancer

16.12.2003


By tailoring the dosage of chemotherapy to each individual patient, the treatment of breast cancer could be improved considerably. This is shown in a dissertation by Uppsala researcher Henrik Lindman at Uppsala University in Sweden. The method has proven to yield excellent results in clinical tests.



The dissertation reports that an alternative way of tailoring the dosage of chemotherapy has been studied and found to work. If the advantages of this method compared to standard treatment can be verified in the follow-up study that has just been completed on more than 1,500 patients in Sweden and Denmark, we may be facing a more extensive change in the treatment of cancer, one that reaches far beyond the sphere of breast cancer. One clear advantage of the method, apart from fewer side-effects and less risk of under-dosage, is that it should provide a way of determining the value of new chemotherapies, since it is probable that tailored dosages will prevent improper dosage regimens to a greater extent than previously.

In treating cancer, the dosage of chemotherapy is normally determined on the basis of the body surface area of the patient, which factors in height and weight. This method has proven to be insufficient when it comes to differences among patients in the amount of chemotherapy in the blood. Some patients receive overdoses with severe side-effects as a result, while others receive under-dosed regimens that risk leaving the tumor insufficiently treated.


Henrik Lindman has studied a method of tailoring just the right dosage for each patient. This is done by measuring the decline in, above all, white corpuscles after each treatment and thereafter adjusting the following treatment. The method proved successful in the three different pioneering trials on women with breast cancer. The differences in tolerated chemotherapy were up to a factor of three across different patients, which, among other things, may be dependent on genetic differences in sensitivity. In a Nordic collaborative project, 525 women with breast cancer at high risk of recurrence were selected for treatment. Half of the patients received 9 doses of tailored treatment while the other half received high-dosage regimens with bone-marrow transplants after three standard dosages of chemotherapy. Patients receiving tailored treatment experienced a lower rate of recurrence of breast cancer (28% compared with 37% after 3 years).

The other two studies involved, respectively, 26 and 44 patients with metastasized breast cancer. Here, too, the effect of treatment was good in comparison with previous experience (81% and 63%, respectively, saw a dramatic reduction in their tumors). Women who could withstand the highest dosages did not experience more general side-effects than those who were given lower dosages.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>