Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailored dosage of chemotherapy effective in treating breast cancer

16.12.2003


By tailoring the dosage of chemotherapy to each individual patient, the treatment of breast cancer could be improved considerably. This is shown in a dissertation by Uppsala researcher Henrik Lindman at Uppsala University in Sweden. The method has proven to yield excellent results in clinical tests.



The dissertation reports that an alternative way of tailoring the dosage of chemotherapy has been studied and found to work. If the advantages of this method compared to standard treatment can be verified in the follow-up study that has just been completed on more than 1,500 patients in Sweden and Denmark, we may be facing a more extensive change in the treatment of cancer, one that reaches far beyond the sphere of breast cancer. One clear advantage of the method, apart from fewer side-effects and less risk of under-dosage, is that it should provide a way of determining the value of new chemotherapies, since it is probable that tailored dosages will prevent improper dosage regimens to a greater extent than previously.

In treating cancer, the dosage of chemotherapy is normally determined on the basis of the body surface area of the patient, which factors in height and weight. This method has proven to be insufficient when it comes to differences among patients in the amount of chemotherapy in the blood. Some patients receive overdoses with severe side-effects as a result, while others receive under-dosed regimens that risk leaving the tumor insufficiently treated.


Henrik Lindman has studied a method of tailoring just the right dosage for each patient. This is done by measuring the decline in, above all, white corpuscles after each treatment and thereafter adjusting the following treatment. The method proved successful in the three different pioneering trials on women with breast cancer. The differences in tolerated chemotherapy were up to a factor of three across different patients, which, among other things, may be dependent on genetic differences in sensitivity. In a Nordic collaborative project, 525 women with breast cancer at high risk of recurrence were selected for treatment. Half of the patients received 9 doses of tailored treatment while the other half received high-dosage regimens with bone-marrow transplants after three standard dosages of chemotherapy. Patients receiving tailored treatment experienced a lower rate of recurrence of breast cancer (28% compared with 37% after 3 years).

The other two studies involved, respectively, 26 and 44 patients with metastasized breast cancer. Here, too, the effect of treatment was good in comparison with previous experience (81% and 63%, respectively, saw a dramatic reduction in their tumors). Women who could withstand the highest dosages did not experience more general side-effects than those who were given lower dosages.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>