Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tailored dosage of chemotherapy effective in treating breast cancer

16.12.2003


By tailoring the dosage of chemotherapy to each individual patient, the treatment of breast cancer could be improved considerably. This is shown in a dissertation by Uppsala researcher Henrik Lindman at Uppsala University in Sweden. The method has proven to yield excellent results in clinical tests.



The dissertation reports that an alternative way of tailoring the dosage of chemotherapy has been studied and found to work. If the advantages of this method compared to standard treatment can be verified in the follow-up study that has just been completed on more than 1,500 patients in Sweden and Denmark, we may be facing a more extensive change in the treatment of cancer, one that reaches far beyond the sphere of breast cancer. One clear advantage of the method, apart from fewer side-effects and less risk of under-dosage, is that it should provide a way of determining the value of new chemotherapies, since it is probable that tailored dosages will prevent improper dosage regimens to a greater extent than previously.

In treating cancer, the dosage of chemotherapy is normally determined on the basis of the body surface area of the patient, which factors in height and weight. This method has proven to be insufficient when it comes to differences among patients in the amount of chemotherapy in the blood. Some patients receive overdoses with severe side-effects as a result, while others receive under-dosed regimens that risk leaving the tumor insufficiently treated.


Henrik Lindman has studied a method of tailoring just the right dosage for each patient. This is done by measuring the decline in, above all, white corpuscles after each treatment and thereafter adjusting the following treatment. The method proved successful in the three different pioneering trials on women with breast cancer. The differences in tolerated chemotherapy were up to a factor of three across different patients, which, among other things, may be dependent on genetic differences in sensitivity. In a Nordic collaborative project, 525 women with breast cancer at high risk of recurrence were selected for treatment. Half of the patients received 9 doses of tailored treatment while the other half received high-dosage regimens with bone-marrow transplants after three standard dosages of chemotherapy. Patients receiving tailored treatment experienced a lower rate of recurrence of breast cancer (28% compared with 37% after 3 years).

The other two studies involved, respectively, 26 and 44 patients with metastasized breast cancer. Here, too, the effect of treatment was good in comparison with previous experience (81% and 63%, respectively, saw a dramatic reduction in their tumors). Women who could withstand the highest dosages did not experience more general side-effects than those who were given lower dosages.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>