Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Brain Disorder Gene Paves Way for Genetic Test

16.12.2003


Duke University Medical Center researchers have identified the second of three genes that can each independently cause the disorder known as cerebral cavernous malformations (CCM), which is characterized by mulberry-like clusters of blood vessels in the brain. The finding paves the way for a new genetic test for the rare, familial disease, which typically lies dormant in patients for decades before its potentially devastating symptoms appear, said the researchers.


Douglas A. Marchuk, PhD
Credit: Duke University Medical Center



The vessel lesions in the brain can cause seizures, severe headaches, hemorrhagic stroke and neurological deficits. Affected individuals have a 50 percent chance of passing the disease on to their children.

"People with this mutation are at great risk for developing blood vessel lesions in the brain and their associated symptoms, as are their future children," said Duke geneticist Douglas Marchuk, Ph.D., who led the study. "This is an example where genetic testing can make a tremendous impact on the care these families receive." Physicians currently diagnose patients only when lesions are found on an MRI scan after symptoms develop.


The team reports its findings in the December 2003 issue of The American Journal of Human Genetics. The work was supported by the National Institutes of Health and the American Heart Association.

Earlier research into the genetic basis of CCM found that three separate genes in the human genome can, when mutated, cause the disease in different families. In 1999, Marchuk’s team and a second group in France independently discovered the first of these genes, called KRIT1.

Although KRIT1’s function remains unknown, the Duke team more recently found that the protein binds a second protein related to a family of receptors called integrins. Integrins are responsible for cells’ ability to respond appropriately to their external environments.

That clue led the team to search the second genetic region linked to CCM for aberrant genes resembling KRIT1’s known protein binding partner.

Nine families with the "type 2" form of CCM harbored eight different mutations in a single gene bearing structural similarity to KRIT1’s partner, the researchers now report. They call the newly identified CCM gene "malcavernin."

"While some individuals with CCM have essentially no symptoms, others suffer profound effects on a day-to-day basis," said genetic counselor Tracey Leedom also of Duke. "The identification of this gene will allow more people with a familial history of the disease to be tested early. If they are found to have the gene, physicians can then conduct an MRI and begin monitoring them carefully for any symptoms."

Lesions can be surgically removed from the brain in some patients, she added. For others, only the symptoms can be treated.

The team will next seek out the last of the genes known to cause CCM, Marchuk said. The investigators have also begun exploring the biological basis of CCM in mice with the disease.

Others at Duke that contributed to the research include lead author Christina Liquori, Ph.D., Elizabeth Huang, Jon Zawistowski, Fiyinfolu Balogun, Lori Hughes and Nicholas Plummer, Ph.D. Additional collaborators include Michel Berg, M.D., at the University of Rochester Medical Center; Adrian Siegel, M.D., at the University Hospital Zurich; T’Prien Stoffer and Eric Johnson, Ph.D., at the Barrow Neurological Institute in Phoenix; Dominique Verlaan, Ph.D., and Guy Rouleau, M.D., at Montreal General Hospital; Milena Cannella, M.D., Vittorio Maglione, M.D., and Ferdinando Squitieri, M.D., at Instituto di Ricovero e Cura a Carattere Scientifico in Italy; and Louis Ptacek, M.D., at the University of California, San Francisco.

Kendall Morgan | dukemed news
Further information:
http://www.dukemednews.org/news/article.php?id=7300

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>