Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU BIONIC EAR research project looks into new ways to cure deafness

12.12.2003


Results from the EU-funded BIONIC EAR project will be presented by the European Commission at this year’s annual meeting of the American Society for Cell Biology (ASCB). The meeting opens tonight in San Francisco



The European Union is funding the 4-year BIONIC EAR project with €1.53 million out of a total budget of €2.77 million . BIONIC EAR looks into ways of repairing the inner ear whose hair cells are damaged by trauma, antibiotics or ageing, thus resulting in an irreversible hearing impairment, which affects more than 10 percent of the population. Project partners include the Université de Montpellier II (France), Stockholm’s Karolinska Institute (Sweden), the Institute of Neuroscience of the “Centro Nazionale Ricerche” (CNR) in Milan (Italy) and the Ecole Polytechnique Fédérale de Lausanne (Switzerland).

The French and Swedish researchers in particular have identified and isolated “progenitor” or adult stem cells from vestibular sensory epithelia (VSE) in mice, which could be differentiated into new sensory hair cells. Electronic stimulation of these cells, connected to the brain, could also help tackle deafness in humans.


“Every year, one European out of ten becomes deaf due to inner ear damage,” says European Research Commissioner Philippe Busquin. “This can be avoided, and the findings of the BIONIC EAR project are very promising. However, more research is needed to prove that these newly differentiated hair cells could efficiently replace damaged elements of the human inner ear. If existing self-repair mechanisms could be enhanced or damaged hair cells be repaired with the help of adult stem cells, we could greatly contribute to the fight against hearing and balance impairments that severely disable so many people. The recognition of the potential of this research by the US and the international scientific community demonstrates that we are at the forefront in this and other scientific fields, and that European excellence paves the way to innovative cutting-edge research.”

EU research at the top

The 1340 projects submitted to this year’s ASCB were "peer-screened" by a specialised committee, and the BIONIC EAR project was included in a short list of top projects to be presented during the event. The research on the sensory hair-cell part of BIONIC EAR was carried out by Dr. Eric Scarfone’s CNRS laboratory at the Université de Montpellier II and by Dr. Mats Ulfendahl at the Karolinska Institute in Stockholm. The laboratory of Prof. Jonas Frisén, also at the Karolinska Institute, is bringing its expertise on adult stem cells to this part of the project, which also comprises three other European laboratories.

Wanted: stem cells in peripheral nervous system

For many years it has been thought that sensory hair cells and their connecting neurons could not be replaced. But growing reports on novel stem cell populations in the central nervous system have prompted European researchers within the BIONIC EAR project to look for stem cells in the inner ears of adult mice.

Repair mechanisms in the inner ear

The BIONIC EAR project aims at investigating new approaches to repair the inner ear. The project had previously shown that damaged connections between hair cells and sensory neurons of the inner ear could be repaired in vitro. The successful identification of stem cells in the inner ear of mice marks a new milestone in this project, which runs until the end of 2004. Together, these results demonstrate the potential for self-repair of the adult mammalian inner ear.

Fixing the damage

Researchers are now trying to turn the knowledge gained during the first 3 years of the project into therapeutic applications, by combining cell therapy (encapsulation in a three-dimensional (3D) polymer matrix of genetically engineered cells) and cochlear implants (an electronic device that directly stimulates the sensory neurons of the inner ear) in an animal model of pathological deafness.

High regenerative potential

The finding of a regenerative potential of adult mammalian inner ear hair cells and of their connections to the brain opens up a new, significant possibility for rehabilitation of sensory handicap linked to peripheral inner ear damage: the stimulation of existing self repair mechanisms. Much is left to learn about the factors that trigger and instruct these mechanisms before they can be put into practical use, and this is bound to become a major line of study.

Annual Meeting "Cell Biology 2003"

The 43rd Annual Meeting of the American Society for Cell Biology (ASCB) will be held between 13 and 17 December at the Moscone Convention Center in San Francisco. It will attract around 8 000 international cell biologists and about 50 science journalists who report on most recent progress in the field of cell biology world-wide.

Michael Wappelhorst | European Commission
Further information:
http://www.ascb.org/meetings/am2003/program.html

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>