Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic develops new technology to improve diagnosis of arm and hand injuries and disease

12.12.2003


IBM collaborated on the industrial design and is manufacturing the new medical device



Mayo Clinic today announced it has developed a series of magnetic resonance imaging (MRI) devices that make it easier to diagnose injuries and diseases that affect wrists, forearms, elbows, hands and fingers. Mayo has obtained FDA approval to market and commercialize these devices, making them available to other medical centers nationwide.

Named Mayo Clinic BC-10 MRI Coils, these devices are highly sophisticated units used in taking detailed pictures of a particular part of the body. They produce high resolution images at 1.5 and 3 Tesla. Tesla indicates the strength of the main magnetic field used in MR imaging. High resolution images improve a physician’s ability to see small structures such as tiny ligaments and nerves in the hand. This means more accurate diagnosis of injuries and diseases, and in some cases, eliminates the need for invasive diagnostic procedures such as arthroscopy, the visual examination of the interior of a joint with a special surgical instrument.


"Accurate diagnosis is the critical forerunner to effective medical treatment, which is why Mayo focused on improving the diagnostic capabilities of magnetic imaging," says Kimberly Amrami, M.D., a radiologist at Mayo Clinic in Rochester.

This is the first of a series of MRI coils Mayo is developing to improve the accuracy and thoroughness of imaging diagnoses. Mayo Clinic worked with IBM industrial design engineers to optimize the functionality for the benefit of both the medical technician and the patient. Some of the design changes IBM orchestrated brought quick reward, such as adding windows to the sides of the device that enable technicians to better view and align patient anatomy within the coil.

"This effort represents years of medical research and a great collaboration between a team of Mayo clinicians and IBM engineers, and we look forward to a continued collaboration, including developing more designs with the goal of improving patient care," says Samuel Prabhakar, director of system solutions, IBM Engineering & Technology Services.

Mayo has been using these coils clinically for three years to diagnose cartilage degeneration, nerve compression, ligament injuries, tendon abnormalities, tumor detection, bone injuries and scarring within the wrist.

"The level of detail and resolution we are now obtaining has allowed for more definitive diagnosis based upon imaging -- something we have been previously cautious about stating," says Richard Berger, M.D., Ph.D., orthopedic surgeon at Mayo Clinic.

In June 2002, the journal Radiology published results from a comparative study in which six healthy volunteers had MRI scans with both the Mayo Clinic MRI Coil and three other designs for wrist scanning. A blinded review of the images by five Mayo Clinic radiologists and one medical physicist indicated a preference for the images created using Mayo Clinic Coil in the majority of the comparisons.

The coils are being manufactured by IBM in Rochester, Minn., and will be available to other medical centers in early 2004. Revenue Mayo receives from this device will be used to support Mayo’s clinical practice, medical research and education activities. Medical centers interested in acquiring the coil may call Mayo Medical Ventures, 507-284-8878, for more information.



B-roll of coil in use available upon request.

Additional Contact
Cary Ziter
IBM Engineering & Technology Services
845-892-5005

Suzanne Leaf-Brock | EurekAlert!
Further information:
http://www.mayo.edu/
http://mayoresearch.mayo.edu/mayo/research/innovative.cfm

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>