Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining various magnetic resonance imaging techniques may help improve breast cancer detection

12.12.2003


Researchers at Johns Hopkins say that combining various types of magnetic resonance (MR) imaging techniques more accurately sorts cancers from benign masses in breast tissues than any single imaging techniques. Their findings are presented in the October issue of Radiology.



Magnetic resonance imaging scanners can be calibrated to take images that highlight a specific type of human tissue. For example, so-called T1-weighted imaging sequences are best at imaging fatty tissues, while T2-weighted sequences best show fluids, like those found inside cysts. Additionally, 3-dimensional MR imaging can help define the size and shape of tumors. Contrast agents, dyes injected into patients prior to imaging to concentrate in the tumor and make it more visible, further enhance MR images similar to the way dye in water helps highlight the "veins" in celery stalks.

In their study, Hopkins researchers combined T1, T2 and 3-D imaging techniques, with and without contrast agents, on 36 subjects. Eighteen already had been diagnosed with benign breast lesions, and 18 with breast cancer. The researchers reviewed the results of the combined images without knowing which images came from which patient.


The combined, or multiparametric MRI technique, was able to identify and characterize breast lesion tissue clusters in all 36 patients, revealing which were benign and which were malignant. In addition, the multiparametric technique was even more powerful when used with contrast agents, providing more precise differentiation between the cancerous and non-cancerous tissue than the same images without contrast.

"Each individual imaging modality has its advantages," says Michael Jacobs, Ph.D., the lead researcher for the study at the Hopkins Department of Radiology. "When all these techniques are combined into one data set, you can achieve an approach that shows the characteristics of a lesion not normally available using just one imaging technique."

Jacobs notes that while his study appears to demonstrate the feasibility of using a combined imaging approach to identifying breast tumors, larger studies are needed to determine if the approach might be useful for studying the molecular dynamics of breast cancer tumors.

"It’s known that certain compounds, such as choline and sodium ions, tend to concentrate in cancer cells," Jacobs says. "We are now investigating whether multiparametric MR imaging might be effective in imaging intracellular compounds within breast tumors. If so, this will enable a comprehensive assessment of the tumor environment."

Gary Stephenson | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>