Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining various magnetic resonance imaging techniques may help improve breast cancer detection

12.12.2003


Researchers at Johns Hopkins say that combining various types of magnetic resonance (MR) imaging techniques more accurately sorts cancers from benign masses in breast tissues than any single imaging techniques. Their findings are presented in the October issue of Radiology.



Magnetic resonance imaging scanners can be calibrated to take images that highlight a specific type of human tissue. For example, so-called T1-weighted imaging sequences are best at imaging fatty tissues, while T2-weighted sequences best show fluids, like those found inside cysts. Additionally, 3-dimensional MR imaging can help define the size and shape of tumors. Contrast agents, dyes injected into patients prior to imaging to concentrate in the tumor and make it more visible, further enhance MR images similar to the way dye in water helps highlight the "veins" in celery stalks.

In their study, Hopkins researchers combined T1, T2 and 3-D imaging techniques, with and without contrast agents, on 36 subjects. Eighteen already had been diagnosed with benign breast lesions, and 18 with breast cancer. The researchers reviewed the results of the combined images without knowing which images came from which patient.


The combined, or multiparametric MRI technique, was able to identify and characterize breast lesion tissue clusters in all 36 patients, revealing which were benign and which were malignant. In addition, the multiparametric technique was even more powerful when used with contrast agents, providing more precise differentiation between the cancerous and non-cancerous tissue than the same images without contrast.

"Each individual imaging modality has its advantages," says Michael Jacobs, Ph.D., the lead researcher for the study at the Hopkins Department of Radiology. "When all these techniques are combined into one data set, you can achieve an approach that shows the characteristics of a lesion not normally available using just one imaging technique."

Jacobs notes that while his study appears to demonstrate the feasibility of using a combined imaging approach to identifying breast tumors, larger studies are needed to determine if the approach might be useful for studying the molecular dynamics of breast cancer tumors.

"It’s known that certain compounds, such as choline and sodium ions, tend to concentrate in cancer cells," Jacobs says. "We are now investigating whether multiparametric MR imaging might be effective in imaging intracellular compounds within breast tumors. If so, this will enable a comprehensive assessment of the tumor environment."

Gary Stephenson | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>