Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University, German and British Researchers Develop Means to Help Post-Traumatic Stress Sufferers

11.12.2003


Try as we may to suppress memories of highly stressful experiences, they nevertheless come back to bother us – even causing attacks of intense fear or other undesirable behavioral impairments.



Now, a group of German, Israeli and British scientists and students have found that a gene-based approach offers promise for development of a treatment that can suppress these reactions, while not impairing memory itself.

In an article appearing as the cover story in the current issue of Molecular Psychiatry, a team of researchers from the Silberman Institute of Life Sciences at the Hebrew University of Jerusalem and the Max Planck Institute for Experimental Medicine in Goettingen, Germany, describe their work with mice who were subjected to stressful conditions.


The team discovered that this stress induces a change in the expression of the acetylcholinesterase gene. Under normal circumstances, this gene produces a vital protein that adheres to neuronal synapses (the interaction sites through which nerve cells communicate with each other). Following stress, however, the same gene produces large quantities of a protein with modified properties that results in heightened electrical signals in the nerve cells communicating through these synapses. The effect is to create reactions of extreme fright or immobilizing shock.

Later encounter with a context which arouses those stressful memories – which might be an object, a sound, an image or other form of association -- can set off that same neuronal reaction. Often, this reaction can have serious consequences, such as chronic fatigue or personality disorders, including post- traumatic stress disorder (PTSD). In the U.S., it is estimated that more than 15 million people a year are identified with PTSD or other anxiety disorders.

The research team at the Hebrew University and in Germany and Britain has succeeded in developing an “antisense” agent that acts to neutralize the process whereby the modified protein is produced, thereby preventing the “extreme” reaction associated with traumatic memory-inducing stimuli.

The researchers from the Hebrew University involved in the project are Prof. Hermona Soreq, who heads the Eric Roland Center for Neurodegenerative Diseases, plus Dr. Binyamin Hochner and graduate students Noa Farchi and Ella H. Sklan. Also participating was Dr. Shai Shoham of Herzog Hospital in Jerusalem. From the Max Planck Institute, the participants are Prof. Joachim Spiess, Dr. Thomas Blank and Ph.D. students Ingrid Nijholt and Min-Jeong Kye. Involved with the work also were Birgit Verbeure and David Owen of the Medical Research Council Laboratory of Molecular Biology, Cambridge, England.

The object of the research is not to erase memory, emphasizes Prof. Soreq – since memory of dangerous situations or circumstances can be beneficial for survival – but rather to develop a drug that would block the harmful reactions of those suffering from recurring stress symptoms due to lingering memories of past traumatic experiences. Until now there has been no drug to treat the core of the post-stress problem, but rather only its symptoms.

Working towards creating a commercial medicinal product based on the research is Ester Neuroscience, a startup company in Tel Aviv, with backing from the Medica Venture Capital Fund, by agreement with the Yissum Research Development Company of the Hebrew University.

Jerry Barrach | Hebrew University
Further information:
http://www.huji.ac.il/huji/eng/index_e.htm

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>