Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University, German and British Researchers Develop Means to Help Post-Traumatic Stress Sufferers

11.12.2003


Try as we may to suppress memories of highly stressful experiences, they nevertheless come back to bother us – even causing attacks of intense fear or other undesirable behavioral impairments.



Now, a group of German, Israeli and British scientists and students have found that a gene-based approach offers promise for development of a treatment that can suppress these reactions, while not impairing memory itself.

In an article appearing as the cover story in the current issue of Molecular Psychiatry, a team of researchers from the Silberman Institute of Life Sciences at the Hebrew University of Jerusalem and the Max Planck Institute for Experimental Medicine in Goettingen, Germany, describe their work with mice who were subjected to stressful conditions.


The team discovered that this stress induces a change in the expression of the acetylcholinesterase gene. Under normal circumstances, this gene produces a vital protein that adheres to neuronal synapses (the interaction sites through which nerve cells communicate with each other). Following stress, however, the same gene produces large quantities of a protein with modified properties that results in heightened electrical signals in the nerve cells communicating through these synapses. The effect is to create reactions of extreme fright or immobilizing shock.

Later encounter with a context which arouses those stressful memories – which might be an object, a sound, an image or other form of association -- can set off that same neuronal reaction. Often, this reaction can have serious consequences, such as chronic fatigue or personality disorders, including post- traumatic stress disorder (PTSD). In the U.S., it is estimated that more than 15 million people a year are identified with PTSD or other anxiety disorders.

The research team at the Hebrew University and in Germany and Britain has succeeded in developing an “antisense” agent that acts to neutralize the process whereby the modified protein is produced, thereby preventing the “extreme” reaction associated with traumatic memory-inducing stimuli.

The researchers from the Hebrew University involved in the project are Prof. Hermona Soreq, who heads the Eric Roland Center for Neurodegenerative Diseases, plus Dr. Binyamin Hochner and graduate students Noa Farchi and Ella H. Sklan. Also participating was Dr. Shai Shoham of Herzog Hospital in Jerusalem. From the Max Planck Institute, the participants are Prof. Joachim Spiess, Dr. Thomas Blank and Ph.D. students Ingrid Nijholt and Min-Jeong Kye. Involved with the work also were Birgit Verbeure and David Owen of the Medical Research Council Laboratory of Molecular Biology, Cambridge, England.

The object of the research is not to erase memory, emphasizes Prof. Soreq – since memory of dangerous situations or circumstances can be beneficial for survival – but rather to develop a drug that would block the harmful reactions of those suffering from recurring stress symptoms due to lingering memories of past traumatic experiences. Until now there has been no drug to treat the core of the post-stress problem, but rather only its symptoms.

Working towards creating a commercial medicinal product based on the research is Ester Neuroscience, a startup company in Tel Aviv, with backing from the Medica Venture Capital Fund, by agreement with the Yissum Research Development Company of the Hebrew University.

Jerry Barrach | Hebrew University
Further information:
http://www.huji.ac.il/huji/eng/index_e.htm

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>