Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University, German and British Researchers Develop Means to Help Post-Traumatic Stress Sufferers

11.12.2003


Try as we may to suppress memories of highly stressful experiences, they nevertheless come back to bother us – even causing attacks of intense fear or other undesirable behavioral impairments.



Now, a group of German, Israeli and British scientists and students have found that a gene-based approach offers promise for development of a treatment that can suppress these reactions, while not impairing memory itself.

In an article appearing as the cover story in the current issue of Molecular Psychiatry, a team of researchers from the Silberman Institute of Life Sciences at the Hebrew University of Jerusalem and the Max Planck Institute for Experimental Medicine in Goettingen, Germany, describe their work with mice who were subjected to stressful conditions.


The team discovered that this stress induces a change in the expression of the acetylcholinesterase gene. Under normal circumstances, this gene produces a vital protein that adheres to neuronal synapses (the interaction sites through which nerve cells communicate with each other). Following stress, however, the same gene produces large quantities of a protein with modified properties that results in heightened electrical signals in the nerve cells communicating through these synapses. The effect is to create reactions of extreme fright or immobilizing shock.

Later encounter with a context which arouses those stressful memories – which might be an object, a sound, an image or other form of association -- can set off that same neuronal reaction. Often, this reaction can have serious consequences, such as chronic fatigue or personality disorders, including post- traumatic stress disorder (PTSD). In the U.S., it is estimated that more than 15 million people a year are identified with PTSD or other anxiety disorders.

The research team at the Hebrew University and in Germany and Britain has succeeded in developing an “antisense” agent that acts to neutralize the process whereby the modified protein is produced, thereby preventing the “extreme” reaction associated with traumatic memory-inducing stimuli.

The researchers from the Hebrew University involved in the project are Prof. Hermona Soreq, who heads the Eric Roland Center for Neurodegenerative Diseases, plus Dr. Binyamin Hochner and graduate students Noa Farchi and Ella H. Sklan. Also participating was Dr. Shai Shoham of Herzog Hospital in Jerusalem. From the Max Planck Institute, the participants are Prof. Joachim Spiess, Dr. Thomas Blank and Ph.D. students Ingrid Nijholt and Min-Jeong Kye. Involved with the work also were Birgit Verbeure and David Owen of the Medical Research Council Laboratory of Molecular Biology, Cambridge, England.

The object of the research is not to erase memory, emphasizes Prof. Soreq – since memory of dangerous situations or circumstances can be beneficial for survival – but rather to develop a drug that would block the harmful reactions of those suffering from recurring stress symptoms due to lingering memories of past traumatic experiences. Until now there has been no drug to treat the core of the post-stress problem, but rather only its symptoms.

Working towards creating a commercial medicinal product based on the research is Ester Neuroscience, a startup company in Tel Aviv, with backing from the Medica Venture Capital Fund, by agreement with the Yissum Research Development Company of the Hebrew University.

Jerry Barrach | Hebrew University
Further information:
http://www.huji.ac.il/huji/eng/index_e.htm

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>