Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce long-sought mouse model of human pancreatic cancer

10.12.2003


Could yield advances in early diagnosis, treatment of lethal disease



Researchers at Dana-Farber Cancer Institute have created bioengineered mice that develop aggressive, fatal pancreatic cancer through the same genetic mishaps that cause the disease in humans. The findings are being posted online today by the journal Genes and Development.

Because the mouse-model cancers start and progress along a path that closely resembles the disease’s course in humans, the scientists believe it will be particularly useful in searching for telltale substances, or biomarkers, in the animals. These biomarkers could lead to a blood or urine screening test to catch the disease in an early and potentially curable stage in the mice and, ultimately, in humans.


Currently, nearly all the 30,000 cases of pancreatic cancer diagnosed annually are fatal within a matter of months because they are too advanced to remove surgically by the time they cause symptoms. Moreover, the standard treatments of chemotherapy and radiation are largely ineffective, for reasons that may become clearer as researchers study the biology of the disease in mice.

"This model shows great promise as a platform for rapid and efficient testing of novel therapeutic agents, and for the discovery of tumor stage-specific markers - both critical, unmet needs for the fourth-leading cause of cancer death in the United States," said Ronald A. DePinho, M.D., a senior author of the paper. The report, whose lead authors are Andrew J. Aguirre and Nabeel M. Bardeesy, Ph.D., will appear in the Dec. 15 print issue of Genes and Development.

DePinho, who is also a professor of medicine at Harvard Medical School, added that the new mouse model is the first to contain the two "critical lesions," or mutations, common to the human disease and "which faithfully recapitulates the rapid onset and lethal progression of the disease."

As in other solid tumors such as colon cancer, a series of genetic mutations underlies the conversion of normal cells in the pancreatic ducts to a precancerous series of stages termed PanIN-1, 2 and 3, and, finally, full-fledged, invasive cancer called adenocarcinoma. Only after the tumor has become a life-threatening adenocarcinoma does it cause symptoms by blocking bile ducts, causing jaundice and symptoms of pain, nausea and weight loss.

The genes mutate for various reasons: carcinogens such as tobacco smoke (smoking is a risk factor for pancreatic cancer), possibly dietary components and advancing age (mistakes in the DNA code of genes pile up and the body’s DNA repair mechanisms fail to keep pace). Several particular mutations have been identified in tissues taken from pancreatic cancer patients. Among them are KRAS - a growth signal stuck in the "on" position, resulting in unchecked cell growth - and several genes that normally suppress tumor formation, including INK4a/Arf, p53, and SMAD4.

Because the basic mechanisms of pancreatic cancer are so poorly understood, scientists have been trying for more than 15 years to create a mouse model that would mimic the human disease but which could be studied and used to identify potential drug targets. However, none of the models to date had produced cancer in mice that faithfully replicated what occurs in humans.

The team headed by Aguirre and Bardeesy used sophisticated bioengineering methods to control the activities of mutant genes in the pancreas. One, a mutant KRAS gene, was activated and kept switched on continuously as the mouse pancreas developed in the fetus. The other mutation inactivated the normally functional INK4a/Arf tumor suppressor gene. These two "signature mutations," the researchers showed, are both needed to convert normal cells into premalignant and then fully invasive pancreatic tumors. Mice that were given either of the mutations alone did not develop invasive cancers.

Bardeesy said that because the cancer-prone mice are all genetically identical and raised in a standard environment, it is possible to identify the biomarkers associated with early and late stages of the cancer. This will provide an entry point for the discovery of equivalent molecules useful in screening humans.


The research was supported by the Lustgarten Foundation for Pancreatic Research, which was established in the name of Marc Lustgarten, Vice Chairman of Cablevision Systems Corp. of New York, who died of the disease.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Contact: Richard Saltus, 617-632-5357.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>