Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce long-sought mouse model of human pancreatic cancer

10.12.2003


Could yield advances in early diagnosis, treatment of lethal disease



Researchers at Dana-Farber Cancer Institute have created bioengineered mice that develop aggressive, fatal pancreatic cancer through the same genetic mishaps that cause the disease in humans. The findings are being posted online today by the journal Genes and Development.

Because the mouse-model cancers start and progress along a path that closely resembles the disease’s course in humans, the scientists believe it will be particularly useful in searching for telltale substances, or biomarkers, in the animals. These biomarkers could lead to a blood or urine screening test to catch the disease in an early and potentially curable stage in the mice and, ultimately, in humans.


Currently, nearly all the 30,000 cases of pancreatic cancer diagnosed annually are fatal within a matter of months because they are too advanced to remove surgically by the time they cause symptoms. Moreover, the standard treatments of chemotherapy and radiation are largely ineffective, for reasons that may become clearer as researchers study the biology of the disease in mice.

"This model shows great promise as a platform for rapid and efficient testing of novel therapeutic agents, and for the discovery of tumor stage-specific markers - both critical, unmet needs for the fourth-leading cause of cancer death in the United States," said Ronald A. DePinho, M.D., a senior author of the paper. The report, whose lead authors are Andrew J. Aguirre and Nabeel M. Bardeesy, Ph.D., will appear in the Dec. 15 print issue of Genes and Development.

DePinho, who is also a professor of medicine at Harvard Medical School, added that the new mouse model is the first to contain the two "critical lesions," or mutations, common to the human disease and "which faithfully recapitulates the rapid onset and lethal progression of the disease."

As in other solid tumors such as colon cancer, a series of genetic mutations underlies the conversion of normal cells in the pancreatic ducts to a precancerous series of stages termed PanIN-1, 2 and 3, and, finally, full-fledged, invasive cancer called adenocarcinoma. Only after the tumor has become a life-threatening adenocarcinoma does it cause symptoms by blocking bile ducts, causing jaundice and symptoms of pain, nausea and weight loss.

The genes mutate for various reasons: carcinogens such as tobacco smoke (smoking is a risk factor for pancreatic cancer), possibly dietary components and advancing age (mistakes in the DNA code of genes pile up and the body’s DNA repair mechanisms fail to keep pace). Several particular mutations have been identified in tissues taken from pancreatic cancer patients. Among them are KRAS - a growth signal stuck in the "on" position, resulting in unchecked cell growth - and several genes that normally suppress tumor formation, including INK4a/Arf, p53, and SMAD4.

Because the basic mechanisms of pancreatic cancer are so poorly understood, scientists have been trying for more than 15 years to create a mouse model that would mimic the human disease but which could be studied and used to identify potential drug targets. However, none of the models to date had produced cancer in mice that faithfully replicated what occurs in humans.

The team headed by Aguirre and Bardeesy used sophisticated bioengineering methods to control the activities of mutant genes in the pancreas. One, a mutant KRAS gene, was activated and kept switched on continuously as the mouse pancreas developed in the fetus. The other mutation inactivated the normally functional INK4a/Arf tumor suppressor gene. These two "signature mutations," the researchers showed, are both needed to convert normal cells into premalignant and then fully invasive pancreatic tumors. Mice that were given either of the mutations alone did not develop invasive cancers.

Bardeesy said that because the cancer-prone mice are all genetically identical and raised in a standard environment, it is possible to identify the biomarkers associated with early and late stages of the cancer. This will provide an entry point for the discovery of equivalent molecules useful in screening humans.


The research was supported by the Lustgarten Foundation for Pancreatic Research, which was established in the name of Marc Lustgarten, Vice Chairman of Cablevision Systems Corp. of New York, who died of the disease.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Contact: Richard Saltus, 617-632-5357.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Fast-tracking T cell therapies with immune-mimicking biomaterials
16.01.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Dengue takes low and slow approach to replication
12.01.2018 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>