Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists announce long-sought mouse model of human pancreatic cancer


Could yield advances in early diagnosis, treatment of lethal disease

Researchers at Dana-Farber Cancer Institute have created bioengineered mice that develop aggressive, fatal pancreatic cancer through the same genetic mishaps that cause the disease in humans. The findings are being posted online today by the journal Genes and Development.

Because the mouse-model cancers start and progress along a path that closely resembles the disease’s course in humans, the scientists believe it will be particularly useful in searching for telltale substances, or biomarkers, in the animals. These biomarkers could lead to a blood or urine screening test to catch the disease in an early and potentially curable stage in the mice and, ultimately, in humans.

Currently, nearly all the 30,000 cases of pancreatic cancer diagnosed annually are fatal within a matter of months because they are too advanced to remove surgically by the time they cause symptoms. Moreover, the standard treatments of chemotherapy and radiation are largely ineffective, for reasons that may become clearer as researchers study the biology of the disease in mice.

"This model shows great promise as a platform for rapid and efficient testing of novel therapeutic agents, and for the discovery of tumor stage-specific markers - both critical, unmet needs for the fourth-leading cause of cancer death in the United States," said Ronald A. DePinho, M.D., a senior author of the paper. The report, whose lead authors are Andrew J. Aguirre and Nabeel M. Bardeesy, Ph.D., will appear in the Dec. 15 print issue of Genes and Development.

DePinho, who is also a professor of medicine at Harvard Medical School, added that the new mouse model is the first to contain the two "critical lesions," or mutations, common to the human disease and "which faithfully recapitulates the rapid onset and lethal progression of the disease."

As in other solid tumors such as colon cancer, a series of genetic mutations underlies the conversion of normal cells in the pancreatic ducts to a precancerous series of stages termed PanIN-1, 2 and 3, and, finally, full-fledged, invasive cancer called adenocarcinoma. Only after the tumor has become a life-threatening adenocarcinoma does it cause symptoms by blocking bile ducts, causing jaundice and symptoms of pain, nausea and weight loss.

The genes mutate for various reasons: carcinogens such as tobacco smoke (smoking is a risk factor for pancreatic cancer), possibly dietary components and advancing age (mistakes in the DNA code of genes pile up and the body’s DNA repair mechanisms fail to keep pace). Several particular mutations have been identified in tissues taken from pancreatic cancer patients. Among them are KRAS - a growth signal stuck in the "on" position, resulting in unchecked cell growth - and several genes that normally suppress tumor formation, including INK4a/Arf, p53, and SMAD4.

Because the basic mechanisms of pancreatic cancer are so poorly understood, scientists have been trying for more than 15 years to create a mouse model that would mimic the human disease but which could be studied and used to identify potential drug targets. However, none of the models to date had produced cancer in mice that faithfully replicated what occurs in humans.

The team headed by Aguirre and Bardeesy used sophisticated bioengineering methods to control the activities of mutant genes in the pancreas. One, a mutant KRAS gene, was activated and kept switched on continuously as the mouse pancreas developed in the fetus. The other mutation inactivated the normally functional INK4a/Arf tumor suppressor gene. These two "signature mutations," the researchers showed, are both needed to convert normal cells into premalignant and then fully invasive pancreatic tumors. Mice that were given either of the mutations alone did not develop invasive cancers.

Bardeesy said that because the cancer-prone mice are all genetically identical and raised in a standard environment, it is possible to identify the biomarkers associated with early and late stages of the cancer. This will provide an entry point for the discovery of equivalent molecules useful in screening humans.

The research was supported by the Lustgarten Foundation for Pancreatic Research, which was established in the name of Marc Lustgarten, Vice Chairman of Cablevision Systems Corp. of New York, who died of the disease.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Contact: Richard Saltus, 617-632-5357.

Bill Schaller | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>