Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel gene therapy delivery uses stem cells that target, attack tumors


Genetically engineered stem cells can find tumors and then produce biological killing agents right at the cancer site, say researchers at The University of Texas M. D. Anderson Cancer Center, who have performed a number of successful "proof of concept" experiments in mice.

Their novel treatment, presented at the annual meeting of the American Society of Hematology (ASH), may offer the first gene therapy "delivery system" capable of homing in on and then attacking cancer that has metastasized -- wherever it is in a patient’s body. And the stem cells will not be rejected, even if they are not derived from the patient.

The researchers have tested the system in mice with a variety of human cancers, including solid ones such as ovarian, brain, breast cancer, melanoma and even such blood-based cancer as leukemia. "This drug delivery system is attracted to cancer cells no matter what form they are in or where they are," says Michael Andreeff, M.D., Ph.D., professor in the Departments of Blood and Marrow Transplantation and Leukemia. "We believe this to be a major find."

M. D. Anderson has filed patent applications on the system, which uses human mesenchymal progenitor cells (MSC), the body’s natural tissue regenerators. These unspecialized cells can migrate to an injury by responding to signals from the area. There they develop the kind of connective tissue that is needed to repair the wound, and can become any kind of tissue required.

Tumors are "never-healing wounds" which use mesenchymal stem cells to help build up the normal tissue that is needed to support the cancer, says Andreeff. "There is constant remodeling of tissue in tumors," he says. So researchers turned the tables on the cancer, taking advantage of a tumor’s ability to attract the stem cells.

In their novel delivery system, researchers isolate a small quantity of MSC from bone marrow, and greatly expand the quantity of those cells in the lab. They then use a virus to deliver a particular gene into the stem cells. When turned on, this gene will produce an anti-cancer effect. When given back to the patient through an intraveneous injection, the millions of engineered mesenchymal progenitor cells will engraft where the tumor environment is signaling them, and will activate the therapeutic gene.

In the study reported at ASH, the researchers examined whether MSC producing human interferon-beta can inhibit the growth of metastatic tumors in the lungs of mice that do not have a functioning immune system. They used an adenovirus vector to deliver the gene that expresses interferon-beta, which can prevent cell reproduction. Andreeff and his team found that when mice were treated with just four weekly injections, their lifespan doubled, on average. They also discovered that when treated cells were placed under the skin of the mice, there was no effect. "The cells need to be in the immediate environment of the tumor to work," which suggests that normal tissue will not be adversely affected, says Andreeff.

Other studies being reported by Andreeff that used different therapeutic "payloads" found a doubling of survival in mice with one kind of ovarian cancer and a cure rate of 70 percent in mice with a different kind of ovarian tumor. Another study demonstrated that when the gene therapy was injected into the carotid (neck) artery of mice with human brain cancer, the genes incorporated themselves into the cancer, not into normal brain tissue.

Further work suggested the novel therapy may be able to help treat resistant blood cancers. Delivery of the interferon-alpha gene product helped destroy leukemia cells, Andreeff says.

"These results suggest that gene-modified MSC can inhibit the growth of leukemias, metastatic tumors of the lungs, and ovarian and brain tumors," he says. "We will need to optimize the genes that are delivered, but the most important discovery here is that these cells are capable of migrating from the bone marrow or blood circulation into tumors, and suggests this can be developed into a potent therapy."

Contact: Julie Penne, 713-792-0655;
Laura Sussman, 713-792-0655;

Julie Penne | EurekAlert!

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>