Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Little-studied waves in the heart may be cause of defibrillation failure

09.12.2003


Vanderbilt University researchers believe a slow electrochemical wave, known as a damped wave, may be one of the reasons that low-voltage defibrillation shocks fail to halt fibrillation in cardiac patients.



The findings by Vanderbilt University researchers John Wikswo, Veniamin Sidorov, Rubin Aliev, Marcella Woods, Franz Baudenbacher and Petra Baudenbacher were published in the Nov. 14 issue of Physical Review Letters.

Fibrillation is a series of rapid, disorganized contractions in the heart caused by multiple uncoordinated, self-generated electrochemical waves that prevent the heart from pumping blood, quickly causing death.


"In normal conditions, an electrochemical wave moves smoothly across the heart, like expanding ripples in a lake when you toss in a stone. This wave then triggers a smooth and orderly contraction of the muscle," Wikswo, the Gordon A. Cain University Professor and Director of the Vanderbilt Institute for Integrative Biosystems Research and Education, said. "In fibrillation, it is as if someone continually throws in lots of rocks at different spots in the lake. In the resulting confusion, no blood gets pumped."

The application of a strong electrical shock, either with paddles on the chest or with an implantable defibrillator, is the best way to stop fibrillation. Ideally, a defibrillation shock would stop all waves in the heart and prevent new waves from arising spontaneously.

"You want to use as low a voltage shock as possible to minimize tissue damage and, for implantable defibrillators, to save your batteries," Wikswo continued. "However, if the voltage is too low, fibrillation returns immediately and you have to try again. The puzzle is why."

Wikswo’s study explores the possibility that some waves might not be fully extinguished by a low voltage defibrillation shock, or new waves might be created by the shock, causing defibrillation to fail. If these remaining or new waves were the difficult-to-detect damped propagating waves, they could propagate slowly within the heart wall, rather than slowly dying out as previously expected. This might cause the heart to return to fibrillation or another cardiac arrhythmia.

"Damped propagating waves are not generally well understood, largely because they are difficult to view and to study," Wikswo said. "It turns out cardiac tissue provides a beautiful example of these waves."

Although cardiac graded responses have been considered for some time, recent advances in high-speed imaging, data processing and numerical modeling are just now allowing their quantitative analysis as damped, propagating waves.

To study the damped waves, Wikswo’s team initiated a wave with a strong stimulus that moved smoothly across the heart. They then created a damped wave with a weaker stimulus and sent it in the wake of the first.

"If you timed it just right you could find that the second wave would hesitate and then split in two," Wikswo continued. "One half would get smaller and slowly die, while the other half would sharply increase and eventually become a self-continuing wave on its own."

This second, self-continuing wave could be a cause of defibrillation failure.

"What surprised us is the ease with which we could create damped waves that hung around for 50 milliseconds, which is a long time when you are defibrillating the heart," Wikswo said.

The research, conducted by studying the rabbit heart, lays the foundation for future studies to determine if the waves created under experimental conditions also occur spontaneously following defibrillation.

Future studies based on this research will be conducted to better understand how to manage these waves, the effect of anti-arrhythmic drugs on them, and whether these findings could be used to improve the efficiency of cardiac defibrillators.

Melanie Catania | Vanderbilt University
Further information:
http://sitemason.vanderbilt.edu/newspub/bjfTyg?id=8580
http://www.vanderbilt.edu/lsp/abstracts/1501-Sidorov-PRL-2003.htm

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>