Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Little-studied waves in the heart may be cause of defibrillation failure

09.12.2003


Vanderbilt University researchers believe a slow electrochemical wave, known as a damped wave, may be one of the reasons that low-voltage defibrillation shocks fail to halt fibrillation in cardiac patients.



The findings by Vanderbilt University researchers John Wikswo, Veniamin Sidorov, Rubin Aliev, Marcella Woods, Franz Baudenbacher and Petra Baudenbacher were published in the Nov. 14 issue of Physical Review Letters.

Fibrillation is a series of rapid, disorganized contractions in the heart caused by multiple uncoordinated, self-generated electrochemical waves that prevent the heart from pumping blood, quickly causing death.


"In normal conditions, an electrochemical wave moves smoothly across the heart, like expanding ripples in a lake when you toss in a stone. This wave then triggers a smooth and orderly contraction of the muscle," Wikswo, the Gordon A. Cain University Professor and Director of the Vanderbilt Institute for Integrative Biosystems Research and Education, said. "In fibrillation, it is as if someone continually throws in lots of rocks at different spots in the lake. In the resulting confusion, no blood gets pumped."

The application of a strong electrical shock, either with paddles on the chest or with an implantable defibrillator, is the best way to stop fibrillation. Ideally, a defibrillation shock would stop all waves in the heart and prevent new waves from arising spontaneously.

"You want to use as low a voltage shock as possible to minimize tissue damage and, for implantable defibrillators, to save your batteries," Wikswo continued. "However, if the voltage is too low, fibrillation returns immediately and you have to try again. The puzzle is why."

Wikswo’s study explores the possibility that some waves might not be fully extinguished by a low voltage defibrillation shock, or new waves might be created by the shock, causing defibrillation to fail. If these remaining or new waves were the difficult-to-detect damped propagating waves, they could propagate slowly within the heart wall, rather than slowly dying out as previously expected. This might cause the heart to return to fibrillation or another cardiac arrhythmia.

"Damped propagating waves are not generally well understood, largely because they are difficult to view and to study," Wikswo said. "It turns out cardiac tissue provides a beautiful example of these waves."

Although cardiac graded responses have been considered for some time, recent advances in high-speed imaging, data processing and numerical modeling are just now allowing their quantitative analysis as damped, propagating waves.

To study the damped waves, Wikswo’s team initiated a wave with a strong stimulus that moved smoothly across the heart. They then created a damped wave with a weaker stimulus and sent it in the wake of the first.

"If you timed it just right you could find that the second wave would hesitate and then split in two," Wikswo continued. "One half would get smaller and slowly die, while the other half would sharply increase and eventually become a self-continuing wave on its own."

This second, self-continuing wave could be a cause of defibrillation failure.

"What surprised us is the ease with which we could create damped waves that hung around for 50 milliseconds, which is a long time when you are defibrillating the heart," Wikswo said.

The research, conducted by studying the rabbit heart, lays the foundation for future studies to determine if the waves created under experimental conditions also occur spontaneously following defibrillation.

Future studies based on this research will be conducted to better understand how to manage these waves, the effect of anti-arrhythmic drugs on them, and whether these findings could be used to improve the efficiency of cardiac defibrillators.

Melanie Catania | Vanderbilt University
Further information:
http://sitemason.vanderbilt.edu/newspub/bjfTyg?id=8580
http://www.vanderbilt.edu/lsp/abstracts/1501-Sidorov-PRL-2003.htm

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>