Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regulatory T cells keep graft-versus-host disease in check

05.12.2003


Bone marrow transplantation offers the hope of a complete cure for patients suffering from certain forms of cancer, such as leukemia or other immune deficiency diseases.



However, there is a risk that transplanted cells may recognize the recipient patient’s tissues as foreign and begin to attack them. This reaction, known as graft-versus-host disease (GVHD), can be lethal if it continues unchecked.

It has recently been shown in mice that the use of large numbers of immunoregulatory CD4+CD25+ T cells can induce tolerance to donor tissue following allogeneic hematopoietic stem cell transplantation and therefore control the development of GVHD.


The challenge however has been to obtain enough freshly purified CD4+CD25+ regulatory T cells from a single donor patient to achieve this therapeutic effect in a clinical setting.

In the December 4 issue of the Journal of Clinical Investigation José Cohen and colleagues from Centre National de la Recherche Scientifique in Paris describe a protocol to circumvent this difficulty.

The authors performed regulatory T cell expansion ex vivo by stimulation with allogeneic antigen-presenting cells, which has the additional effect of producing alloantigen-specific regulatory T cells. Regulatory T cells specific for recipient-type alloantigens, but not irrelevant regulatory T cells, controlled GVHD while favoring immune reconstitution.

Preferential survival of specific regulatory T cells was observed in the grafted animals. The results will be extremely useful in the design of future clinical trials that rely on the use of CD4+CD25+ regulatory T cells to control GVHD.


TITLE: Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia.

AUTHOR CONTACT:
José L. Cohen
Centre National de la Recherche Scientifique, Paris, France.
Phone: 33-1-42-17-74-61
Fax: 33-1-42-17-74-62
E-mail: jose.cohen@chups.jussieu.fr

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>