Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UC Riverside Researchers Publish Paper on Botulism Detection System


Vladimir Parpura

Device Allows Early Detection of Botulism Toxins and More Effective Treatment

Researchers at the University of California, Riverside have developed a device that speeds the detection of a virulent strain of botulism neurotoxin from hours or days to minutes, making treatment or vaccination more effective.

Botulinum neurotoxin B, one of five strains that are known to be toxic to humans, is targeted in the paper that appeared in the Nov. 11 issue of the Proceedings of the National Academy of Sciences. The paper’s authors included UC Riverside Professor of Cell Biology and Neuroscience Vladimir Parpura and Umar Mohideen, a professor of physics, both part of the Center for Nanoscale Science and Engineering at UC Riverside; graduate student Wei Liu; staff researcher Vedrana Montana; and Edwin Chapman, a professor of physiology at the University of Wisconsin, Madison.

Given its rapid detection and small size, the device, known as a micromechanosensor, will find applications in medicine, in the war against bioterrorism or in the food industry, Parpura said.

“Of course a good deal of testing needs to be done first,” Parpura said. “What we’ve done is shown proof that the principle works.”

The principle, he added, works much like a fishing pole and line. A protein-coated bead at the end of a microscopic cantilever comes in contact with the neurotoxin, which cuts through the protein strands connecting the two, much like a fish would cut through a fishing line. The bead’s separation causes the cantilever to vibrate, announcing the neurotoxin’s presence. While effective, the process is not yet ready for practical application.

“Right now the issue is that it’s linked to an atomic-force microscope, an expensive piece of equipment, which means it cannot be used on a widespread basis,” Parpura said.

However, he holds out hope that the process could soon be put into wider practice to detect one of the most potent toxins known to man. The Centers for Disease Control and Prevention in Atlanta list botulism as one of the six most dangerous bioterrorism threats. Other such bio-threats include anthrax, plague and smallpox.

“The important thing to note is that the technique is very general and, in the future, can be done without the use of the atomic-force microscope. This also means that it will find uses in fields outside (medical) toxin sensors,” said Mohideen, adding that the process can be used in food and water quality applications.

The key to the process, however, is its timeliness, according to the researchers. Antitoxin vaccinations can work only if applied quickly, before the onset of symptoms. Symptoms of food-borne botulism intoxication frequently take from 12 to 36 hours to develop, according to the CDC.

“When you think that we’ve cut the detection time from a few hours or a couple of days, down to a few minutes, that’s what’s important,” Parpura said. “The shorter the detection time, the more time you have to treat people and that makes a great deal of difference when dealing with this neurotoxin.”

“We are working on approaches to further reduce the detection time and substantially improve the sensitivity,” Mohideen added.

Botulism, while rare in the United States, is considered a medical emergency in which roughly 10 percent of those afflicted die. Those who survive may take weeks or months to recover and frequently undergo intensive hospital care with extensive use of ventilators.

Ricardo Duran | UC Riverside
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>