Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside Researchers Publish Paper on Botulism Detection System

05.12.2003


Vladimir Parpura


Device Allows Early Detection of Botulism Toxins and More Effective Treatment

Researchers at the University of California, Riverside have developed a device that speeds the detection of a virulent strain of botulism neurotoxin from hours or days to minutes, making treatment or vaccination more effective.

Botulinum neurotoxin B, one of five strains that are known to be toxic to humans, is targeted in the paper that appeared in the Nov. 11 issue of the Proceedings of the National Academy of Sciences. The paper’s authors included UC Riverside Professor of Cell Biology and Neuroscience Vladimir Parpura and Umar Mohideen, a professor of physics, both part of the Center for Nanoscale Science and Engineering at UC Riverside; graduate student Wei Liu; staff researcher Vedrana Montana; and Edwin Chapman, a professor of physiology at the University of Wisconsin, Madison.



Given its rapid detection and small size, the device, known as a micromechanosensor, will find applications in medicine, in the war against bioterrorism or in the food industry, Parpura said.

“Of course a good deal of testing needs to be done first,” Parpura said. “What we’ve done is shown proof that the principle works.”

The principle, he added, works much like a fishing pole and line. A protein-coated bead at the end of a microscopic cantilever comes in contact with the neurotoxin, which cuts through the protein strands connecting the two, much like a fish would cut through a fishing line. The bead’s separation causes the cantilever to vibrate, announcing the neurotoxin’s presence. While effective, the process is not yet ready for practical application.

“Right now the issue is that it’s linked to an atomic-force microscope, an expensive piece of equipment, which means it cannot be used on a widespread basis,” Parpura said.

However, he holds out hope that the process could soon be put into wider practice to detect one of the most potent toxins known to man. The Centers for Disease Control and Prevention in Atlanta list botulism as one of the six most dangerous bioterrorism threats. Other such bio-threats include anthrax, plague and smallpox.

“The important thing to note is that the technique is very general and, in the future, can be done without the use of the atomic-force microscope. This also means that it will find uses in fields outside (medical) toxin sensors,” said Mohideen, adding that the process can be used in food and water quality applications.

The key to the process, however, is its timeliness, according to the researchers. Antitoxin vaccinations can work only if applied quickly, before the onset of symptoms. Symptoms of food-borne botulism intoxication frequently take from 12 to 36 hours to develop, according to the CDC.

“When you think that we’ve cut the detection time from a few hours or a couple of days, down to a few minutes, that’s what’s important,” Parpura said. “The shorter the detection time, the more time you have to treat people and that makes a great deal of difference when dealing with this neurotoxin.”

“We are working on approaches to further reduce the detection time and substantially improve the sensitivity,” Mohideen added.

Botulism, while rare in the United States, is considered a medical emergency in which roughly 10 percent of those afflicted die. Those who survive may take weeks or months to recover and frequently undergo intensive hospital care with extensive use of ventilators.

Ricardo Duran | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=707

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>