Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside Researchers Publish Paper on Botulism Detection System

05.12.2003


Vladimir Parpura


Device Allows Early Detection of Botulism Toxins and More Effective Treatment

Researchers at the University of California, Riverside have developed a device that speeds the detection of a virulent strain of botulism neurotoxin from hours or days to minutes, making treatment or vaccination more effective.

Botulinum neurotoxin B, one of five strains that are known to be toxic to humans, is targeted in the paper that appeared in the Nov. 11 issue of the Proceedings of the National Academy of Sciences. The paper’s authors included UC Riverside Professor of Cell Biology and Neuroscience Vladimir Parpura and Umar Mohideen, a professor of physics, both part of the Center for Nanoscale Science and Engineering at UC Riverside; graduate student Wei Liu; staff researcher Vedrana Montana; and Edwin Chapman, a professor of physiology at the University of Wisconsin, Madison.



Given its rapid detection and small size, the device, known as a micromechanosensor, will find applications in medicine, in the war against bioterrorism or in the food industry, Parpura said.

“Of course a good deal of testing needs to be done first,” Parpura said. “What we’ve done is shown proof that the principle works.”

The principle, he added, works much like a fishing pole and line. A protein-coated bead at the end of a microscopic cantilever comes in contact with the neurotoxin, which cuts through the protein strands connecting the two, much like a fish would cut through a fishing line. The bead’s separation causes the cantilever to vibrate, announcing the neurotoxin’s presence. While effective, the process is not yet ready for practical application.

“Right now the issue is that it’s linked to an atomic-force microscope, an expensive piece of equipment, which means it cannot be used on a widespread basis,” Parpura said.

However, he holds out hope that the process could soon be put into wider practice to detect one of the most potent toxins known to man. The Centers for Disease Control and Prevention in Atlanta list botulism as one of the six most dangerous bioterrorism threats. Other such bio-threats include anthrax, plague and smallpox.

“The important thing to note is that the technique is very general and, in the future, can be done without the use of the atomic-force microscope. This also means that it will find uses in fields outside (medical) toxin sensors,” said Mohideen, adding that the process can be used in food and water quality applications.

The key to the process, however, is its timeliness, according to the researchers. Antitoxin vaccinations can work only if applied quickly, before the onset of symptoms. Symptoms of food-borne botulism intoxication frequently take from 12 to 36 hours to develop, according to the CDC.

“When you think that we’ve cut the detection time from a few hours or a couple of days, down to a few minutes, that’s what’s important,” Parpura said. “The shorter the detection time, the more time you have to treat people and that makes a great deal of difference when dealing with this neurotoxin.”

“We are working on approaches to further reduce the detection time and substantially improve the sensitivity,” Mohideen added.

Botulism, while rare in the United States, is considered a medical emergency in which roughly 10 percent of those afflicted die. Those who survive may take weeks or months to recover and frequently undergo intensive hospital care with extensive use of ventilators.

Ricardo Duran | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=707

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>