Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside Researchers Publish Paper on Botulism Detection System

05.12.2003


Vladimir Parpura


Device Allows Early Detection of Botulism Toxins and More Effective Treatment

Researchers at the University of California, Riverside have developed a device that speeds the detection of a virulent strain of botulism neurotoxin from hours or days to minutes, making treatment or vaccination more effective.

Botulinum neurotoxin B, one of five strains that are known to be toxic to humans, is targeted in the paper that appeared in the Nov. 11 issue of the Proceedings of the National Academy of Sciences. The paper’s authors included UC Riverside Professor of Cell Biology and Neuroscience Vladimir Parpura and Umar Mohideen, a professor of physics, both part of the Center for Nanoscale Science and Engineering at UC Riverside; graduate student Wei Liu; staff researcher Vedrana Montana; and Edwin Chapman, a professor of physiology at the University of Wisconsin, Madison.



Given its rapid detection and small size, the device, known as a micromechanosensor, will find applications in medicine, in the war against bioterrorism or in the food industry, Parpura said.

“Of course a good deal of testing needs to be done first,” Parpura said. “What we’ve done is shown proof that the principle works.”

The principle, he added, works much like a fishing pole and line. A protein-coated bead at the end of a microscopic cantilever comes in contact with the neurotoxin, which cuts through the protein strands connecting the two, much like a fish would cut through a fishing line. The bead’s separation causes the cantilever to vibrate, announcing the neurotoxin’s presence. While effective, the process is not yet ready for practical application.

“Right now the issue is that it’s linked to an atomic-force microscope, an expensive piece of equipment, which means it cannot be used on a widespread basis,” Parpura said.

However, he holds out hope that the process could soon be put into wider practice to detect one of the most potent toxins known to man. The Centers for Disease Control and Prevention in Atlanta list botulism as one of the six most dangerous bioterrorism threats. Other such bio-threats include anthrax, plague and smallpox.

“The important thing to note is that the technique is very general and, in the future, can be done without the use of the atomic-force microscope. This also means that it will find uses in fields outside (medical) toxin sensors,” said Mohideen, adding that the process can be used in food and water quality applications.

The key to the process, however, is its timeliness, according to the researchers. Antitoxin vaccinations can work only if applied quickly, before the onset of symptoms. Symptoms of food-borne botulism intoxication frequently take from 12 to 36 hours to develop, according to the CDC.

“When you think that we’ve cut the detection time from a few hours or a couple of days, down to a few minutes, that’s what’s important,” Parpura said. “The shorter the detection time, the more time you have to treat people and that makes a great deal of difference when dealing with this neurotoxin.”

“We are working on approaches to further reduce the detection time and substantially improve the sensitivity,” Mohideen added.

Botulism, while rare in the United States, is considered a medical emergency in which roughly 10 percent of those afflicted die. Those who survive may take weeks or months to recover and frequently undergo intensive hospital care with extensive use of ventilators.

Ricardo Duran | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=707

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>