Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origin of multiple myeloma found in rare stem cell

04.12.2003


Johns Hopkins Kimmel Cancer Center scientists have identified the cell likely to be responsible for the development of multiple myeloma, a cancer of the bone marrow that destroys bone tissue. The research, published in Blood online, suggests that therapies designed for long-term cure of the disease should target this stem cell, which, unlike other cells, can copy itself and differentiate into one or more specialized cell types.

In their studies to learn why multiple myeloma so often recurs following drug treatment, the investigators uncovered a rare stem cell , occurring in just one out of every 10,000 cells or less than one percent of all myeloma cells.

Working with immune system B-cells, the Johns Hopkins team found that this stem cell gives rise to the malignant bone marrow plasma cells characterized by multiple myeloma.



Current treatments target the malignant plasma cells but may not be effective on the errant multiple myeloma stem cells, allowing the cancer to recur. "Most therapies today are aimed at the cancer you can see, but to cure cancer you have to go after the cells responsible for the disease, similar to how we kill a weed by getting at its roots, not just the part above the ground," explains Richard Jones, M.D., professor and director of bone marrow transplant at the Johns Hopkins Kimmel Cancer Center. "If you cut off the flower and stem of a dandelion, it may look like it has died for a period of time, but the weed eventually will grow back. If you get the root, however, the weed does not grow back."

The scientists found the rare stem cell by looking at markers on the surface of damaged B-cells, which develop into plasma cells that cannot divide and multiply. "We know what the markers are on cancerous plasma cells and the antibodies they make, and we also know the markers on B-cells that are not cancerous. So, we went looking for a B-cell that has the same antibodies, can make copies of itself and mature into cancerous plasma cells," says William Matsui, M.D., assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

They found that this multiple myeloma stem cell looks and acts genetically different from the plasma cell.

"Because these two cells are biologically different, we may need two therapies – one to kill the plasma cells, or the visible part of the weed; and one to kill the root – the stem cells," says Matsui. "Treatments that are directed at myeloma plasma cells are likely to produce visible results, but they will be temporary improvements unless we also target the myeloma stem cell."

Therapies for myeloma undergoing study at the Johns Hopkins Kimmel Cancer Center include antibodies that target the stem cells and drugs to make them age prematurely. Cancer stem cells have been found as the culprit in chronic myeloid leukemia, and the scientists believe the same pattern of cancer development may apply to other cancers, including breast cancer, acute myeloid leukemia and acute lymphocytic leukemia.

Multiple myeloma is the second most common blood cancer and strikes more than 14,000 Americans each year. Close to 11,000 will die from the disease.


This research was funded by the National Cancer Institute.

Other participants in this research include Carol Ann Huff, Qiuju Wang, Matthew T. Malehorn, James Barber, Yvette Tanhehco, B. Douglas Smith, and Curt I. Civin from the Johns Hopkins Kimmel Cancer Center.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>