Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origin of multiple myeloma found in rare stem cell

04.12.2003


Johns Hopkins Kimmel Cancer Center scientists have identified the cell likely to be responsible for the development of multiple myeloma, a cancer of the bone marrow that destroys bone tissue. The research, published in Blood online, suggests that therapies designed for long-term cure of the disease should target this stem cell, which, unlike other cells, can copy itself and differentiate into one or more specialized cell types.

In their studies to learn why multiple myeloma so often recurs following drug treatment, the investigators uncovered a rare stem cell , occurring in just one out of every 10,000 cells or less than one percent of all myeloma cells.

Working with immune system B-cells, the Johns Hopkins team found that this stem cell gives rise to the malignant bone marrow plasma cells characterized by multiple myeloma.



Current treatments target the malignant plasma cells but may not be effective on the errant multiple myeloma stem cells, allowing the cancer to recur. "Most therapies today are aimed at the cancer you can see, but to cure cancer you have to go after the cells responsible for the disease, similar to how we kill a weed by getting at its roots, not just the part above the ground," explains Richard Jones, M.D., professor and director of bone marrow transplant at the Johns Hopkins Kimmel Cancer Center. "If you cut off the flower and stem of a dandelion, it may look like it has died for a period of time, but the weed eventually will grow back. If you get the root, however, the weed does not grow back."

The scientists found the rare stem cell by looking at markers on the surface of damaged B-cells, which develop into plasma cells that cannot divide and multiply. "We know what the markers are on cancerous plasma cells and the antibodies they make, and we also know the markers on B-cells that are not cancerous. So, we went looking for a B-cell that has the same antibodies, can make copies of itself and mature into cancerous plasma cells," says William Matsui, M.D., assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

They found that this multiple myeloma stem cell looks and acts genetically different from the plasma cell.

"Because these two cells are biologically different, we may need two therapies – one to kill the plasma cells, or the visible part of the weed; and one to kill the root – the stem cells," says Matsui. "Treatments that are directed at myeloma plasma cells are likely to produce visible results, but they will be temporary improvements unless we also target the myeloma stem cell."

Therapies for myeloma undergoing study at the Johns Hopkins Kimmel Cancer Center include antibodies that target the stem cells and drugs to make them age prematurely. Cancer stem cells have been found as the culprit in chronic myeloid leukemia, and the scientists believe the same pattern of cancer development may apply to other cancers, including breast cancer, acute myeloid leukemia and acute lymphocytic leukemia.

Multiple myeloma is the second most common blood cancer and strikes more than 14,000 Americans each year. Close to 11,000 will die from the disease.


This research was funded by the National Cancer Institute.

Other participants in this research include Carol Ann Huff, Qiuju Wang, Matthew T. Malehorn, James Barber, Yvette Tanhehco, B. Douglas Smith, and Curt I. Civin from the Johns Hopkins Kimmel Cancer Center.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>