Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Origin of multiple myeloma found in rare stem cell


Johns Hopkins Kimmel Cancer Center scientists have identified the cell likely to be responsible for the development of multiple myeloma, a cancer of the bone marrow that destroys bone tissue. The research, published in Blood online, suggests that therapies designed for long-term cure of the disease should target this stem cell, which, unlike other cells, can copy itself and differentiate into one or more specialized cell types.

In their studies to learn why multiple myeloma so often recurs following drug treatment, the investigators uncovered a rare stem cell , occurring in just one out of every 10,000 cells or less than one percent of all myeloma cells.

Working with immune system B-cells, the Johns Hopkins team found that this stem cell gives rise to the malignant bone marrow plasma cells characterized by multiple myeloma.

Current treatments target the malignant plasma cells but may not be effective on the errant multiple myeloma stem cells, allowing the cancer to recur. "Most therapies today are aimed at the cancer you can see, but to cure cancer you have to go after the cells responsible for the disease, similar to how we kill a weed by getting at its roots, not just the part above the ground," explains Richard Jones, M.D., professor and director of bone marrow transplant at the Johns Hopkins Kimmel Cancer Center. "If you cut off the flower and stem of a dandelion, it may look like it has died for a period of time, but the weed eventually will grow back. If you get the root, however, the weed does not grow back."

The scientists found the rare stem cell by looking at markers on the surface of damaged B-cells, which develop into plasma cells that cannot divide and multiply. "We know what the markers are on cancerous plasma cells and the antibodies they make, and we also know the markers on B-cells that are not cancerous. So, we went looking for a B-cell that has the same antibodies, can make copies of itself and mature into cancerous plasma cells," says William Matsui, M.D., assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

They found that this multiple myeloma stem cell looks and acts genetically different from the plasma cell.

"Because these two cells are biologically different, we may need two therapies – one to kill the plasma cells, or the visible part of the weed; and one to kill the root – the stem cells," says Matsui. "Treatments that are directed at myeloma plasma cells are likely to produce visible results, but they will be temporary improvements unless we also target the myeloma stem cell."

Therapies for myeloma undergoing study at the Johns Hopkins Kimmel Cancer Center include antibodies that target the stem cells and drugs to make them age prematurely. Cancer stem cells have been found as the culprit in chronic myeloid leukemia, and the scientists believe the same pattern of cancer development may apply to other cancers, including breast cancer, acute myeloid leukemia and acute lymphocytic leukemia.

Multiple myeloma is the second most common blood cancer and strikes more than 14,000 Americans each year. Close to 11,000 will die from the disease.

This research was funded by the National Cancer Institute.

Other participants in this research include Carol Ann Huff, Qiuju Wang, Matthew T. Malehorn, James Barber, Yvette Tanhehco, B. Douglas Smith, and Curt I. Civin from the Johns Hopkins Kimmel Cancer Center.

Vanessa Wasta | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>