Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling a protein, researchers uncover mechanics of anti-cancer agent

03.12.2003


From within the rich fabric of connecting tissue between cells, researchers of four institutions, led by the University of Illinois at Urbana-Champaign, have identified the action of anastellin, a natural agent that is showing promise blocking metastasis of cancer cells and enhancing wound healing.


FN-III-1 during unraveling (bottom). Red (top and below) depicts the strong sheet (anastellin). Green depicts the weak sheet.
Credit: UIUC



That anastellin is derived from the cell adhesion protein fibronectin found in the extracellular matrix surrounding cells was known. Researchers at the Burnham Institute in California in September had documented the molecular structure of anastellin, but its ability to initiate matrix assembly and block the spread of cancer cells remained a mystery.

Using crystallography, atomic force microscopy and advanced computer modeling, researchers sorted the chemical structure and mechanical strength of the known fibronectin proteins that glue together myriads of cells in mammalian body tissues.


In the Dec. 9 issue of the Proceedings of the National Academy of Sciences,
they show that the fibronectin known as FN-III-1 behaves differently mechanically than other type-three modules. The paper was placed online Dec. 1 at the PNAS Web site.

"Type 3-1 stands out," said Klaus Schulten, holder of the Swanlund Chair in Physics at Illinois and director of the theoretical and computational biophysics group at the Beckman Institute for Advanced Science and Technology.

"When stretched mechanically, it extends in two stages, first to about one-third of its total length, then to full length, or about 10 times its initial size," he said. "The first stretch reaches a rather stable intermediate. Other fibronectin type-three modules reach their extended length more quickly."

All fibronectin type-three modules consist of a sandwich structure containing two sheets, but Schulten and his colleagues found that one sheet of 3-1 is much stronger.

"It is mainly this strong sheet that is anastellin, and it stabilizes the stretching intermediate by refusing to unravel," said Viola Vogel, professor of bioengineering and director of the Center for Nanotechnology at the University of Washington at Seattle.

"Research has shown that cells can apply sufficient mechanical force to the surrounding extracellular matrix to unravel fibronectin type-three modules," she said. "The stretching of 3-1 unmasks the buried anastellin. It appears to restrict the motion of cancer cells, in effect creating strong jail bars that hold the cancerous inmates from moving freely."

"To understand how this is done," Schulten said, "one must know that the extracellular matrix is an intelligent fabric. It connects cells, guides their movements and communication, and acts as glue between cells in living tissue, strengthening when needed."

The matrix is made of several types of proteins, not just fibronectin. Each has a distinctive chemical composition and structure. The proteins are like knots in a net, forming a network of fibrils. As the network is stretched, the proteins change their structures and expose chemically active groups. Once exposed, anastellin enhances the ability of the proteins to form networks.

"The cells use anastellin apparently when it arises in half-unraveled FN-III-1 to strengthen the glue effect of the matrix," said Mu Gao, a doctoral student studying with Schulten at Illinois. "Anastellin acts as part of FN-III-1 or by itself as an anti-cancer drug."

Unraveling of fibronectins is determined by the arrangement of the some 100 amino acids within them, said David Craig, a former graduate student in bioengineering at the University of Washington. FN-III-1’s amino acids form hydrogen bonds among themselves and are organized to create the strong-weak-sheet protein structure. Nuclear magnetic resonance unveiled the amino-acid arrangement that makes up the protein structure.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>