Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ultrafast MRI benefits stroke patients

02.12.2003


A new magnetic resonance imaging (MRI) technology reduces brain-imaging time from 20 minutes to three minutes while maintaining accuracy and decreasing patient discomfort, according to early research results presented at the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA).



"The three-minute head scan is as good as the 20-minute version, and in some instances better because stroke patients may be distressed and move around," said study co-author, Jonathan H. Gillard, M.D. "Pictures taken in a shorter period of time are less susceptible to degradation from the patient moving during the scan." Dr. Gillard is a lecturer and honorary consultant neuroradiologist at Addenbrooke’s Hospital, University of Cambridge in England, where the study is ongoing.

To be successful, treatment with intravenous thrombolytic (clot-busting) drugs must typically begin within three hours after stroke onset. Interventional radiology has increased the critical treatment window through the use of catheters that deliver the drugs directly to the clot in the brain, but every minute counts. Therefore, it is essential that stroke patients be diagnosed quickly, so that treatment can begin. Computed tomography (CT) is the usual method for diagnosing stroke, because it only takes a few minutes, compared to 20 minutes with conventional MRI. However, unlike MRI, CT does not identify the parts of the brain that are at risk of damage.


The researchers studied 24 patients with clinical diagnosis of probable acute middle cerebral artery stroke to compare images obtained with conventional MRI and with the three-minute protocol using new multi-channel, phased-array brain coils, which can produce the same number of images in a fraction of the time. Overall, the two protocols were comparable in image quality and diagnostic results. However, two of the three-minute protocol images were of better quality than the conventional images, because the faster imaging eliminated complications from patient movement. The three-minute protocol also correctly identified blockage for treatment with clot-busting drugs.

"The conventional 20-minute MRI may be distressing for patients who are already agitated by stroke symptoms, such as a weak arm or leg or a speech deficit," Dr. Gillard said. "Despite the machine noise and possible claustrophobia, agitated patients are more likely to remain still during a quick procedure than a lengthy one."

Stroke is the third leading cause of death in the United States, killing nearly 160,000 Americans annually, according to the National Center for Health Statistics. The National Institute of Neurologic Disorders and Stroke reports that more than 700,000 Americans have a new or recurrent stroke each year.

"The three-minute protocol is a tremendous technological advance that positively impacts patients," Dr. Gillard said. "These multi-channel, phased-array brain coils were all but inconceivable a few years ago."

Co-authors of the paper being presented by Dr. Gillard are Jean M. U-King-Im, M.R.C.S., Rikin A. Trivedi, M.R.C.P., M.R.C.S., Martin J. Graves, M.Sc., Kirsty Harkness, M.R.C.P., and Hayley Eales.


RSNA is an association of more than 35,000 radiologists, radiation oncologists and related scientists committed to promoting excellence in radiology through education and by fostering research, with the ultimate goal of improving patient care. The Society is based in Oak Brook, Ill.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org/press03

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>