Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ultrafast MRI benefits stroke patients

02.12.2003


A new magnetic resonance imaging (MRI) technology reduces brain-imaging time from 20 minutes to three minutes while maintaining accuracy and decreasing patient discomfort, according to early research results presented at the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA).



"The three-minute head scan is as good as the 20-minute version, and in some instances better because stroke patients may be distressed and move around," said study co-author, Jonathan H. Gillard, M.D. "Pictures taken in a shorter period of time are less susceptible to degradation from the patient moving during the scan." Dr. Gillard is a lecturer and honorary consultant neuroradiologist at Addenbrooke’s Hospital, University of Cambridge in England, where the study is ongoing.

To be successful, treatment with intravenous thrombolytic (clot-busting) drugs must typically begin within three hours after stroke onset. Interventional radiology has increased the critical treatment window through the use of catheters that deliver the drugs directly to the clot in the brain, but every minute counts. Therefore, it is essential that stroke patients be diagnosed quickly, so that treatment can begin. Computed tomography (CT) is the usual method for diagnosing stroke, because it only takes a few minutes, compared to 20 minutes with conventional MRI. However, unlike MRI, CT does not identify the parts of the brain that are at risk of damage.


The researchers studied 24 patients with clinical diagnosis of probable acute middle cerebral artery stroke to compare images obtained with conventional MRI and with the three-minute protocol using new multi-channel, phased-array brain coils, which can produce the same number of images in a fraction of the time. Overall, the two protocols were comparable in image quality and diagnostic results. However, two of the three-minute protocol images were of better quality than the conventional images, because the faster imaging eliminated complications from patient movement. The three-minute protocol also correctly identified blockage for treatment with clot-busting drugs.

"The conventional 20-minute MRI may be distressing for patients who are already agitated by stroke symptoms, such as a weak arm or leg or a speech deficit," Dr. Gillard said. "Despite the machine noise and possible claustrophobia, agitated patients are more likely to remain still during a quick procedure than a lengthy one."

Stroke is the third leading cause of death in the United States, killing nearly 160,000 Americans annually, according to the National Center for Health Statistics. The National Institute of Neurologic Disorders and Stroke reports that more than 700,000 Americans have a new or recurrent stroke each year.

"The three-minute protocol is a tremendous technological advance that positively impacts patients," Dr. Gillard said. "These multi-channel, phased-array brain coils were all but inconceivable a few years ago."

Co-authors of the paper being presented by Dr. Gillard are Jean M. U-King-Im, M.R.C.S., Rikin A. Trivedi, M.R.C.P., M.R.C.S., Martin J. Graves, M.Sc., Kirsty Harkness, M.R.C.P., and Hayley Eales.


RSNA is an association of more than 35,000 radiologists, radiation oncologists and related scientists committed to promoting excellence in radiology through education and by fostering research, with the ultimate goal of improving patient care. The Society is based in Oak Brook, Ill.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org/press03

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>