Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ultrafast MRI benefits stroke patients

02.12.2003


A new magnetic resonance imaging (MRI) technology reduces brain-imaging time from 20 minutes to three minutes while maintaining accuracy and decreasing patient discomfort, according to early research results presented at the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA).



"The three-minute head scan is as good as the 20-minute version, and in some instances better because stroke patients may be distressed and move around," said study co-author, Jonathan H. Gillard, M.D. "Pictures taken in a shorter period of time are less susceptible to degradation from the patient moving during the scan." Dr. Gillard is a lecturer and honorary consultant neuroradiologist at Addenbrooke’s Hospital, University of Cambridge in England, where the study is ongoing.

To be successful, treatment with intravenous thrombolytic (clot-busting) drugs must typically begin within three hours after stroke onset. Interventional radiology has increased the critical treatment window through the use of catheters that deliver the drugs directly to the clot in the brain, but every minute counts. Therefore, it is essential that stroke patients be diagnosed quickly, so that treatment can begin. Computed tomography (CT) is the usual method for diagnosing stroke, because it only takes a few minutes, compared to 20 minutes with conventional MRI. However, unlike MRI, CT does not identify the parts of the brain that are at risk of damage.


The researchers studied 24 patients with clinical diagnosis of probable acute middle cerebral artery stroke to compare images obtained with conventional MRI and with the three-minute protocol using new multi-channel, phased-array brain coils, which can produce the same number of images in a fraction of the time. Overall, the two protocols were comparable in image quality and diagnostic results. However, two of the three-minute protocol images were of better quality than the conventional images, because the faster imaging eliminated complications from patient movement. The three-minute protocol also correctly identified blockage for treatment with clot-busting drugs.

"The conventional 20-minute MRI may be distressing for patients who are already agitated by stroke symptoms, such as a weak arm or leg or a speech deficit," Dr. Gillard said. "Despite the machine noise and possible claustrophobia, agitated patients are more likely to remain still during a quick procedure than a lengthy one."

Stroke is the third leading cause of death in the United States, killing nearly 160,000 Americans annually, according to the National Center for Health Statistics. The National Institute of Neurologic Disorders and Stroke reports that more than 700,000 Americans have a new or recurrent stroke each year.

"The three-minute protocol is a tremendous technological advance that positively impacts patients," Dr. Gillard said. "These multi-channel, phased-array brain coils were all but inconceivable a few years ago."

Co-authors of the paper being presented by Dr. Gillard are Jean M. U-King-Im, M.R.C.S., Rikin A. Trivedi, M.R.C.P., M.R.C.S., Martin J. Graves, M.Sc., Kirsty Harkness, M.R.C.P., and Hayley Eales.


RSNA is an association of more than 35,000 radiologists, radiation oncologists and related scientists committed to promoting excellence in radiology through education and by fostering research, with the ultimate goal of improving patient care. The Society is based in Oak Brook, Ill.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org/press03

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>