Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ultrafast MRI benefits stroke patients

02.12.2003


A new magnetic resonance imaging (MRI) technology reduces brain-imaging time from 20 minutes to three minutes while maintaining accuracy and decreasing patient discomfort, according to early research results presented at the 89th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA).



"The three-minute head scan is as good as the 20-minute version, and in some instances better because stroke patients may be distressed and move around," said study co-author, Jonathan H. Gillard, M.D. "Pictures taken in a shorter period of time are less susceptible to degradation from the patient moving during the scan." Dr. Gillard is a lecturer and honorary consultant neuroradiologist at Addenbrooke’s Hospital, University of Cambridge in England, where the study is ongoing.

To be successful, treatment with intravenous thrombolytic (clot-busting) drugs must typically begin within three hours after stroke onset. Interventional radiology has increased the critical treatment window through the use of catheters that deliver the drugs directly to the clot in the brain, but every minute counts. Therefore, it is essential that stroke patients be diagnosed quickly, so that treatment can begin. Computed tomography (CT) is the usual method for diagnosing stroke, because it only takes a few minutes, compared to 20 minutes with conventional MRI. However, unlike MRI, CT does not identify the parts of the brain that are at risk of damage.


The researchers studied 24 patients with clinical diagnosis of probable acute middle cerebral artery stroke to compare images obtained with conventional MRI and with the three-minute protocol using new multi-channel, phased-array brain coils, which can produce the same number of images in a fraction of the time. Overall, the two protocols were comparable in image quality and diagnostic results. However, two of the three-minute protocol images were of better quality than the conventional images, because the faster imaging eliminated complications from patient movement. The three-minute protocol also correctly identified blockage for treatment with clot-busting drugs.

"The conventional 20-minute MRI may be distressing for patients who are already agitated by stroke symptoms, such as a weak arm or leg or a speech deficit," Dr. Gillard said. "Despite the machine noise and possible claustrophobia, agitated patients are more likely to remain still during a quick procedure than a lengthy one."

Stroke is the third leading cause of death in the United States, killing nearly 160,000 Americans annually, according to the National Center for Health Statistics. The National Institute of Neurologic Disorders and Stroke reports that more than 700,000 Americans have a new or recurrent stroke each year.

"The three-minute protocol is a tremendous technological advance that positively impacts patients," Dr. Gillard said. "These multi-channel, phased-array brain coils were all but inconceivable a few years ago."

Co-authors of the paper being presented by Dr. Gillard are Jean M. U-King-Im, M.R.C.S., Rikin A. Trivedi, M.R.C.P., M.R.C.S., Martin J. Graves, M.Sc., Kirsty Harkness, M.R.C.P., and Hayley Eales.


RSNA is an association of more than 35,000 radiologists, radiation oncologists and related scientists committed to promoting excellence in radiology through education and by fostering research, with the ultimate goal of improving patient care. The Society is based in Oak Brook, Ill.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org/press03

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>