Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers develop blood substitute that shows promise for use in emergency situations

02.12.2003


An artificial blood product developed by researchers at the Albert Einstein College of Medicine of Yeshiva University is showing great promise in ongoing clinical trials in Stockholm, Sweden - the first time that a blood substitute has ever been used successfully in humans. The Einstein researchers - whose work is supported by $2.2 million in grants from the National Institutes of Health and the U.S. Army -- are also fine-tuning a powder version of the substitute that can be reconstituted for use as needed with the simple addition of water.



An October 23rd BBC News article describing the Stockholm trials quoted one enthusiastic researcher, Dr. Pierre LaFolie, chief physician at Karolinska Hospital in Sweden, "If this really works all the way, then mankind will have taken a big step forward."

The leader in developing the blood product is Dr. Seetharama Acharya, professor of medicine and of biophysics and physiology at Einstein. Using blood from donated supplies - whose shelf life for use in transfusions is generally limited to 42 days - Dr. Acharya developed the technology that makes the hemoglobin removed from "old" red blood cells suitable for use in transfusions.


"With our blood product, the issue of blood typing is removed," says Dr. Acharya.
"Patients with any blood type can receive the artificial blood, which then transports oxygen
through the body to help limit damage at a time when loss of blood can lead to death."

"When time is of the essence - on the battlefield, for example - being able to provide a blood transfusion without the need for typing can save critical seconds," said Dr. Joel Friedman, professor of biophysics and physiology at Einstein and principal investigator of the NIH-funded project. "The same could be said of an accident scene with multiple injuries or emergency surgeries. Our product offers a viable bridge during emergency situations for providing a blood product that complements the individual’s own blood while transporting oxygen vital to the person’s well-being."

Initial clinical trials are taking place at Sweden’s Karolinska Hospital. The product being studied was produced by a pharmaceutical company that has licensed the technology for making the blood substitute from its Einstein inventors. Thus far, eight patients have been tested, with none demonstrating signs either of rejection or of any of the potential deleterious side effects, such as hypertension, that have been observed with many of the earlier candidates for use as blood substitutes.

The study also showed that this artificial blood transported even more oxygen throughout the body than real blood, which can help to limit tissue damage associated with oxygen deprivation.

"The implications for the use of a blood substitute like ours could be far-reaching," said Dr. Friedman. "We’re very excited about the many potential uses for this product and, using the support from the NIH and U.S. Army, plan to fine-tune and perfect it through further testing that will ultimately lead to its use in real-life emergency situations."

Karen Gardner | AECM
Further information:
http://www.aecom.yu.edu/home/news/subblood.htm

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>