Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein researchers develop blood substitute that shows promise for use in emergency situations

02.12.2003


An artificial blood product developed by researchers at the Albert Einstein College of Medicine of Yeshiva University is showing great promise in ongoing clinical trials in Stockholm, Sweden - the first time that a blood substitute has ever been used successfully in humans. The Einstein researchers - whose work is supported by $2.2 million in grants from the National Institutes of Health and the U.S. Army -- are also fine-tuning a powder version of the substitute that can be reconstituted for use as needed with the simple addition of water.



An October 23rd BBC News article describing the Stockholm trials quoted one enthusiastic researcher, Dr. Pierre LaFolie, chief physician at Karolinska Hospital in Sweden, "If this really works all the way, then mankind will have taken a big step forward."

The leader in developing the blood product is Dr. Seetharama Acharya, professor of medicine and of biophysics and physiology at Einstein. Using blood from donated supplies - whose shelf life for use in transfusions is generally limited to 42 days - Dr. Acharya developed the technology that makes the hemoglobin removed from "old" red blood cells suitable for use in transfusions.


"With our blood product, the issue of blood typing is removed," says Dr. Acharya.
"Patients with any blood type can receive the artificial blood, which then transports oxygen
through the body to help limit damage at a time when loss of blood can lead to death."

"When time is of the essence - on the battlefield, for example - being able to provide a blood transfusion without the need for typing can save critical seconds," said Dr. Joel Friedman, professor of biophysics and physiology at Einstein and principal investigator of the NIH-funded project. "The same could be said of an accident scene with multiple injuries or emergency surgeries. Our product offers a viable bridge during emergency situations for providing a blood product that complements the individual’s own blood while transporting oxygen vital to the person’s well-being."

Initial clinical trials are taking place at Sweden’s Karolinska Hospital. The product being studied was produced by a pharmaceutical company that has licensed the technology for making the blood substitute from its Einstein inventors. Thus far, eight patients have been tested, with none demonstrating signs either of rejection or of any of the potential deleterious side effects, such as hypertension, that have been observed with many of the earlier candidates for use as blood substitutes.

The study also showed that this artificial blood transported even more oxygen throughout the body than real blood, which can help to limit tissue damage associated with oxygen deprivation.

"The implications for the use of a blood substitute like ours could be far-reaching," said Dr. Friedman. "We’re very excited about the many potential uses for this product and, using the support from the NIH and U.S. Army, plan to fine-tune and perfect it through further testing that will ultimately lead to its use in real-life emergency situations."

Karen Gardner | AECM
Further information:
http://www.aecom.yu.edu/home/news/subblood.htm

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>