Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CT scans find tiny bladder, kidney & urinary cancers

01.12.2003


Scan finds problems often missed by other tests, helps high-risk patients get help early



A single 15-minute CT scan may be all it takes to find tiny cancers, stones and other problems in the kidneys, bladders and urinary tracts of high-risk patients -- potentially saving them from many additional tests, and from delayed detection and treatment. And the detailed imaging scan can be done using modern CT (computed tomography) machines now found in many large hospitals.

That’s the message that University of Michigan Health System radiologists will give this week at the annual meeting of the Radiological Society of North America, where they will present new findings on multi-detector CT urography, or MDCTU.


As one of the most experienced MDCTU teams in the nation, with more than 1,000 patients scanned, they hope to show colleagues from around the nation that the technique is extremely sensitive, very accurate and relatively easy to adopt.

At the meeting, U-M radiologists Elaine Caoili, M.D., and Richard H. Cohan, M.D., will showcase their findings that MDCTU can find numerous problems in the tiny vessels of the body’s urine collection system, as well as detecting bladder cancer, kidney and bladder stones, and kidney cysts and cancers.

And, they will show how MDCTU may be a better and far more accurate option for high-risk patients than the traditional 30-minute X-ray exam that is often done on patients with symptoms such as blood in their urine or problems with urination.

That exam, known as intravenous pyelogram (IVP) or intravenous urography (IVU), finds the cause of symptoms less than 50 percent of the time. And IVP’s high false-positive and false-negative rates often mean that high-risk patients either endure a series of tests and scans before getting a firm diagnosis, or get a false sense of security from a mistakenly "clean" report and only get diagnosed much later.

"Our experience to date with MDCTU in patients with prior bladder and urinary tract cancer has convinced us that it is as good as IVP -- and probably far better -- for detecting all abnormalities of the urinary system," says Cohan, a professor of radiology at the U-M Medical School.

"We’re able to see subtle tumors as small as 2 to 3 millimeters, in areas where other exams can’t go, and we’ve been able to save patients the delay and aggravation of coming back for repeated diagnostic scans and procedures," adds Caoili, a clinical assistant professor of radiology whose RSNA Research Scholar award helped fund the research. "We hope our colleagues will adopt this technique for use in patients in whom they strongly suspect urinary abnormalities, such as those with prior cancer."

Cohan will give a course on MDCTU at the RSNA meeting, along with several other leading national investigators from Brigham and Women’s Hospital, the University of Pennsylvania and the Mayo Clinic. He will also give a course on kidney imaging, including MDCTU. Meanwhile, Caoili will present a poster of research results, and a computerized educational display that will teach radiologists how to conduct and interpret the scans.

MDCTU scans can be done on super-fast helical CT scanners, which pass X-rays through the patient’s body from many angles and collect them on the other side using multiple detectors surrounding the patient. During the scan, the path of the X-rays is slightly altered by a contrast dye given to the patient intravenously. The dye works its way through the bloodstream into the kidneys, where it is excreted as part of the urine into tiny vessels within the kidneys and then into the thin, 12-inch-long tubes called ureters that lead to the bladder.

The contrast dye allows the CT scanner to make detailed images of the patient’s entire urinary system, in "slices" less than a millimeter thick. Computers combine them to make cross-sections and three-dimensional images that can be looked at in different ways to spot problems such as cancer.

More than 91,000 Americans are diagnosed with urinary system cancers each year, according to the American Cancer Society, and 25,000 die of those cancers. Most of those diagnosed have bladder or kidney cancer, while a smaller number have cancer in one or both ureters. Men are three times more likely than women to develop urinary system cancers. Smokers, people over age 60, and people exposed to certain industrial chemicals, are also far more likely to develop these cancers.

Caoili’s poster at the RSNA meeting will show how MDCTU can be optimized to give the most accurate result for imaging the ureters and nearby vessels, using data collected from 85 patients scanned at the U-M. The data show that MDCTU images can be optimized by delaying the scan of the ureters and bladder a few minutes longer after the kidneys are imaged, and by giving an intravenous dose of saline solution to make the ureter more opaque and therefore easier to see.

These two improvements, combined with the U-M team’s four years of experience in collecting and analyzing the images produced by MDCTU, have made the technique the standard initial diagnostic tool for U-M patients with a history of urinary system cancer who have new symptoms or are being monitored for recurrence. At U-M, radiologists work with urologists from the Michigan Urology Center, including James Montie, M.D., and Gary Faerber, M.D., to determine which patients are most likely to benefit from an MDCTU scan.

Together, they have diagnosed more than 70 cases of cancer in the past two years, often in patients whose tumors were so small or so far up the urinary tract that they might not have been found by other means until they grew much larger. The team published results from 65 patients in the journal Radiology in February 2002, showing a 93 percent detection rate for all urinary system cancers.

Now, the U-M team hopes that by sharing their methods, they can help other teams begin to perform MDCTU at their own institutions. Many hospitals have already been using CT to find kidney stones and cancers, because of past studies that detected 98 percent of these larger problems, but most have not used MDCTU to image the entire urinary system as a replacement for IVU.

Although MDCTU scans require more expensive imaging and computer equipment, and more detailed and time-consuming reading by radiologists, than IVP, MDCTU may be a more complete and thorough test. IVP often leads to additional imaging tests such as CT.

Says Caoili, "We hope that MDCTU can become the first and only imaging test used for evaluating high-risk patients with urinary system symptoms, and that it will soon allow patients everywhere to get accurate early diagnoses that might improve their outcomes."


References: RSNA scientific poster 317GU-p; Radiology, Vol. 222, No. 2, pp. 353-360

Note: Patients with a history of urinary system cancer who would like to be considered for an MDCTU scan at the University of Michigan may call the U-M Cancer Answer Line at 1-800-865-1125.

Kara Gavin | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>