Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nose straightened by laser

01.12.2003


A unique methodology that allows to control the form of cartilage tissues in the human organism has been developed by researchers of the Moscow Institute of Laser and Information Technologies Problems, Russian Academy of Sciences. A new methodology is based on strictly controllable heating of cartilages – for example, those of crooked nasal septum or injured intervertebral disks, - with the help of infrared laser radiation.



So far, the problem of crooked nasal septum has been solved only through surgical operation. However, this operation is very traumatic, it is performed under general anaesthetic and is connected with significant loss of blood. Therefore, not all patients agree to this operation, although it required by many – almost every fifth person. A new approach allows to do without any surgical operation, replacing the operation by a painless ten-minute procedure.

The phenomenon it is based on was discovered by Emil Sobol, Doctor of Science (Physics and Mathematics) back in 1992. That is the so-called effect of stress relaxation and change of cartilage shape under exposure to nondestructive laser heating. The essence is that a short-term heating up to a strictly defined temperature of approximately 70 degrees C makes the cartilage tissue soft and it can be put into any desired shape, which will be preserved after cooling down.


Certainly, the cartilages should be heated very carefully. That is a living tissue and it should not be “spoiled” – it should not denature or even worse –burn down. Apparently, only target area should be exposed to laser irradiation, all surrounding tissues should not be heated. The scientists have determined that mechanical and optical properties of the cartilaginous tissue depend a lot on the patient’s age, therefore, the tissues of different age should be irradiated differently. That is why, secure and automated laser procedure is needed.

There requirements will be met in a new medical laser device which is being developed now in the laboratory of biophotonics (Institute of Laser and Information Technologies Problems, Russian Academy of Sciences) under the guidance of Emil Sobol and with support of the Russian Foundation for Basic Research. A new device will be able to automatically measure the temperature of the cartilage and its surrounding tissues, to optimize parameters of laser impact depending on the patient’s specificity, and to discontinue irradiation when the required temperature is reached and the cartilage has acquired the necessary plasticity. According to the developers, they will be able to manufacture and test a pre-production model of the device in the clinic already in 2004. Then, the shape of cartilage – be that the nasal septum or intervertebral disks - can be improved quickly, efficiently and absolutely painlessly with the help of laser almost in any polyclinic.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>