Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nose straightened by laser

01.12.2003


A unique methodology that allows to control the form of cartilage tissues in the human organism has been developed by researchers of the Moscow Institute of Laser and Information Technologies Problems, Russian Academy of Sciences. A new methodology is based on strictly controllable heating of cartilages – for example, those of crooked nasal septum or injured intervertebral disks, - with the help of infrared laser radiation.



So far, the problem of crooked nasal septum has been solved only through surgical operation. However, this operation is very traumatic, it is performed under general anaesthetic and is connected with significant loss of blood. Therefore, not all patients agree to this operation, although it required by many – almost every fifth person. A new approach allows to do without any surgical operation, replacing the operation by a painless ten-minute procedure.

The phenomenon it is based on was discovered by Emil Sobol, Doctor of Science (Physics and Mathematics) back in 1992. That is the so-called effect of stress relaxation and change of cartilage shape under exposure to nondestructive laser heating. The essence is that a short-term heating up to a strictly defined temperature of approximately 70 degrees C makes the cartilage tissue soft and it can be put into any desired shape, which will be preserved after cooling down.


Certainly, the cartilages should be heated very carefully. That is a living tissue and it should not be “spoiled” – it should not denature or even worse –burn down. Apparently, only target area should be exposed to laser irradiation, all surrounding tissues should not be heated. The scientists have determined that mechanical and optical properties of the cartilaginous tissue depend a lot on the patient’s age, therefore, the tissues of different age should be irradiated differently. That is why, secure and automated laser procedure is needed.

There requirements will be met in a new medical laser device which is being developed now in the laboratory of biophotonics (Institute of Laser and Information Technologies Problems, Russian Academy of Sciences) under the guidance of Emil Sobol and with support of the Russian Foundation for Basic Research. A new device will be able to automatically measure the temperature of the cartilage and its surrounding tissues, to optimize parameters of laser impact depending on the patient’s specificity, and to discontinue irradiation when the required temperature is reached and the cartilage has acquired the necessary plasticity. According to the developers, they will be able to manufacture and test a pre-production model of the device in the clinic already in 2004. Then, the shape of cartilage – be that the nasal septum or intervertebral disks - can be improved quickly, efficiently and absolutely painlessly with the help of laser almost in any polyclinic.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>