Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nose straightened by laser

01.12.2003


A unique methodology that allows to control the form of cartilage tissues in the human organism has been developed by researchers of the Moscow Institute of Laser and Information Technologies Problems, Russian Academy of Sciences. A new methodology is based on strictly controllable heating of cartilages – for example, those of crooked nasal septum or injured intervertebral disks, - with the help of infrared laser radiation.



So far, the problem of crooked nasal septum has been solved only through surgical operation. However, this operation is very traumatic, it is performed under general anaesthetic and is connected with significant loss of blood. Therefore, not all patients agree to this operation, although it required by many – almost every fifth person. A new approach allows to do without any surgical operation, replacing the operation by a painless ten-minute procedure.

The phenomenon it is based on was discovered by Emil Sobol, Doctor of Science (Physics and Mathematics) back in 1992. That is the so-called effect of stress relaxation and change of cartilage shape under exposure to nondestructive laser heating. The essence is that a short-term heating up to a strictly defined temperature of approximately 70 degrees C makes the cartilage tissue soft and it can be put into any desired shape, which will be preserved after cooling down.


Certainly, the cartilages should be heated very carefully. That is a living tissue and it should not be “spoiled” – it should not denature or even worse –burn down. Apparently, only target area should be exposed to laser irradiation, all surrounding tissues should not be heated. The scientists have determined that mechanical and optical properties of the cartilaginous tissue depend a lot on the patient’s age, therefore, the tissues of different age should be irradiated differently. That is why, secure and automated laser procedure is needed.

There requirements will be met in a new medical laser device which is being developed now in the laboratory of biophotonics (Institute of Laser and Information Technologies Problems, Russian Academy of Sciences) under the guidance of Emil Sobol and with support of the Russian Foundation for Basic Research. A new device will be able to automatically measure the temperature of the cartilage and its surrounding tissues, to optimize parameters of laser impact depending on the patient’s specificity, and to discontinue irradiation when the required temperature is reached and the cartilage has acquired the necessary plasticity. According to the developers, they will be able to manufacture and test a pre-production model of the device in the clinic already in 2004. Then, the shape of cartilage – be that the nasal septum or intervertebral disks - can be improved quickly, efficiently and absolutely painlessly with the help of laser almost in any polyclinic.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>