Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nose straightened by laser

01.12.2003


A unique methodology that allows to control the form of cartilage tissues in the human organism has been developed by researchers of the Moscow Institute of Laser and Information Technologies Problems, Russian Academy of Sciences. A new methodology is based on strictly controllable heating of cartilages – for example, those of crooked nasal septum or injured intervertebral disks, - with the help of infrared laser radiation.



So far, the problem of crooked nasal septum has been solved only through surgical operation. However, this operation is very traumatic, it is performed under general anaesthetic and is connected with significant loss of blood. Therefore, not all patients agree to this operation, although it required by many – almost every fifth person. A new approach allows to do without any surgical operation, replacing the operation by a painless ten-minute procedure.

The phenomenon it is based on was discovered by Emil Sobol, Doctor of Science (Physics and Mathematics) back in 1992. That is the so-called effect of stress relaxation and change of cartilage shape under exposure to nondestructive laser heating. The essence is that a short-term heating up to a strictly defined temperature of approximately 70 degrees C makes the cartilage tissue soft and it can be put into any desired shape, which will be preserved after cooling down.


Certainly, the cartilages should be heated very carefully. That is a living tissue and it should not be “spoiled” – it should not denature or even worse –burn down. Apparently, only target area should be exposed to laser irradiation, all surrounding tissues should not be heated. The scientists have determined that mechanical and optical properties of the cartilaginous tissue depend a lot on the patient’s age, therefore, the tissues of different age should be irradiated differently. That is why, secure and automated laser procedure is needed.

There requirements will be met in a new medical laser device which is being developed now in the laboratory of biophotonics (Institute of Laser and Information Technologies Problems, Russian Academy of Sciences) under the guidance of Emil Sobol and with support of the Russian Foundation for Basic Research. A new device will be able to automatically measure the temperature of the cartilage and its surrounding tissues, to optimize parameters of laser impact depending on the patient’s specificity, and to discontinue irradiation when the required temperature is reached and the cartilage has acquired the necessary plasticity. According to the developers, they will be able to manufacture and test a pre-production model of the device in the clinic already in 2004. Then, the shape of cartilage – be that the nasal septum or intervertebral disks - can be improved quickly, efficiently and absolutely painlessly with the help of laser almost in any polyclinic.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>