Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Age-related muscle loss linked to protein interplay, says Stanford researcher


Any older athlete can attest that aging muscles don’t heal as fast as youthful ones. Now researchers at Stanford University School of Medicine have found a molecular link between older muscles and slow healing. This work could lead to ways of preventing atrophy from immobilization, space flight or simply due to aging.

"What you really want to do is maintain the youthfulness of the regeneration pathway," said Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences and an investigator at the Veterans Affairs Palo Alto Health Care System. The work will be published in the Nov. 28 issue of Science.

Rando and postdoctoral scholar Irina Conboy, PhD, focused their attention on a group of cells called satellite cells, which dot the outside of muscle fibers. These cells come to the rescue of damaged muscles, dividing to form new muscle tissue and generating new satellite cells for future repairs.

In previous work, Rando found that satellite cells spring into action when a protein on the cell surface called Notch becomes activated, much like flicking the cell’s molecular "on" switch. What flips the switch is another protein called Delta, which is made on nearby cells in injured muscle. This same combination of Delta and Notch also plays a role in guiding cells through embryonic development.

Having found this pathway, Rando and Conboy wondered whether slow healing in older muscles resulted from problems with signaling between Delta and Notch - failing either to make enough Delta or to respond to the Delta signal.

In their initial experiments, Rando and Conboy found that young, middle-aged and older mice all had the same number of satellite cells in their muscles and that these cells contained equivalent amounts of Notch.

"It doesn’t seem as if there’s anything wrong with the satellite cells or Notch in aged muscle," Rando said. That left Delta as the suspect molecule.

To test whether older muscles produce normal amounts of Delta, the researchers looked at the amount of protein made by mice of different ages. Young and adult mice, equivalent to about 20- and 45-year-old humans, both had a large increase in Delta after an injury. Muscles in older mice, equivalent to a 70-year-old human, made much less Delta after an injury, giving a smaller cry for help to the satellite cells. In response, fewer satellite cells were activated to repair the muscle damage.

A further set of experiments showed that slow repair in older muscles can be overcome. When the team applied a molecule to young muscles that blocked Delta, those satellite cells failed to divide in response to damage. Conversely, when they applied a Delta-mimicking molecule to injured, older muscles, satellite cells began dividing much like the those in younger muscle. The older muscles with artificially activated satellite cells had a regenerative ability comparable to that of younger muscle.

Although the studies focused on muscle regeneration after injury, Rando said similar problems with the interplay between Delta and Notch may cause the gradual muscle atrophy that occurs in older people, in astronauts or in people whose limbs are immobilized in a cast or from bed rest.

"If you presume that normal muscle bulk is maintained by gradual replacement of muscle tissue by satellite cells and that gradual replacement is diminished in older people, that would lead to atrophy," Rando said. "Figuring out atrophy in one of the pathways could relate to the others."

Rando said his team still needs to learn what signals normally cause the muscle to produce Delta, why those signals fail in older muscles and whether that change is reversible.

Other Stanford researchers involved in the study are postdoctoral scholars Michael Conboy, PhD, and Gayle Smythe, PhD.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at

PRINT MEDIA CONTACT: Amy Adams at 650-723-3900 (
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (

Amy Adams | EurekAlert!
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>