Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Age-related muscle loss linked to protein interplay, says Stanford researcher

28.11.2003


Any older athlete can attest that aging muscles don’t heal as fast as youthful ones. Now researchers at Stanford University School of Medicine have found a molecular link between older muscles and slow healing. This work could lead to ways of preventing atrophy from immobilization, space flight or simply due to aging.



"What you really want to do is maintain the youthfulness of the regeneration pathway," said Thomas Rando, MD, PhD, associate professor of neurology and neurological sciences and an investigator at the Veterans Affairs Palo Alto Health Care System. The work will be published in the Nov. 28 issue of Science.

Rando and postdoctoral scholar Irina Conboy, PhD, focused their attention on a group of cells called satellite cells, which dot the outside of muscle fibers. These cells come to the rescue of damaged muscles, dividing to form new muscle tissue and generating new satellite cells for future repairs.


In previous work, Rando found that satellite cells spring into action when a protein on the cell surface called Notch becomes activated, much like flicking the cell’s molecular "on" switch. What flips the switch is another protein called Delta, which is made on nearby cells in injured muscle. This same combination of Delta and Notch also plays a role in guiding cells through embryonic development.

Having found this pathway, Rando and Conboy wondered whether slow healing in older muscles resulted from problems with signaling between Delta and Notch - failing either to make enough Delta or to respond to the Delta signal.

In their initial experiments, Rando and Conboy found that young, middle-aged and older mice all had the same number of satellite cells in their muscles and that these cells contained equivalent amounts of Notch.

"It doesn’t seem as if there’s anything wrong with the satellite cells or Notch in aged muscle," Rando said. That left Delta as the suspect molecule.

To test whether older muscles produce normal amounts of Delta, the researchers looked at the amount of protein made by mice of different ages. Young and adult mice, equivalent to about 20- and 45-year-old humans, both had a large increase in Delta after an injury. Muscles in older mice, equivalent to a 70-year-old human, made much less Delta after an injury, giving a smaller cry for help to the satellite cells. In response, fewer satellite cells were activated to repair the muscle damage.

A further set of experiments showed that slow repair in older muscles can be overcome. When the team applied a molecule to young muscles that blocked Delta, those satellite cells failed to divide in response to damage. Conversely, when they applied a Delta-mimicking molecule to injured, older muscles, satellite cells began dividing much like the those in younger muscle. The older muscles with artificially activated satellite cells had a regenerative ability comparable to that of younger muscle.

Although the studies focused on muscle regeneration after injury, Rando said similar problems with the interplay between Delta and Notch may cause the gradual muscle atrophy that occurs in older people, in astronauts or in people whose limbs are immobilized in a cast or from bed rest.

"If you presume that normal muscle bulk is maintained by gradual replacement of muscle tissue by satellite cells and that gradual replacement is diminished in older people, that would lead to atrophy," Rando said. "Figuring out atrophy in one of the pathways could relate to the others."

Rando said his team still needs to learn what signals normally cause the muscle to produce Delta, why those signals fail in older muscles and whether that change is reversible.


Other Stanford researchers involved in the study are postdoctoral scholars Michael Conboy, PhD, and Gayle Smythe, PhD.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at 650-723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>