Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Researchers Link Nitric Oxide, Vessel Health

24.11.2003


Jason Allen, Ph.D., conducting a study of the brachial artery in the arm
PHOTO CREDIT: Duke University Medical Center


Duke University Medical Center researchers have shown an association between changes in nitrate, a biochemical marker of nitric oxide production, and physiological changes in arteries’ reaction to stress. They hope their discovery could eventually lead to a non-invasive method of determining which patients are at risk for developing cardiovascular disease.

Such a simple diagnostic is important, they said, because up to half of patients who develop heart disease do not have the typical risk factors. Furthermore, using this new approach, the researchers demonstrated that exercise improved the marker in patients at risk for developing cardiovascular disease.

In their pilot study, the researchers linked the systemic production of nitric oxide, a chemical known to play a key role in controlling the ability of arteries to constrict or relax, with changes in the endothelial lining of arteries after being stressed.



"This is the first study to attempt to link whole body production of nitric oxide with regional endothelial function," said Jason Allen, Ph.D., who presented the results of the Duke study today (Nov. 22, 2003) during the 10th annual scientific sessions of the Society for Free Radical Biology and Medicine. "Both measures were found to discriminate between healthy participants and those with diagnosed cardiovascular disease."

In addition to its ability to dilate arteries, nitric oxide has other properties that protect against cardiovascular disease, such as inhibiting blood platelet clumping, preventing smooth muscle proliferation within the artery and inhibiting the immune response.

On the other hand, other risk factors, such as diabetes, high blood pressure, mental stress and smoking can reduce nitric oxide’s protective properties, said the researchers. It is believed that these patients produce more oxygen free radicals, impairing the ability of the body to respond appropriately to nitric oxide. These oxygen free radicals are highly reactive chemicals that are the potentially destructive byproducts of the disease process.

In their experiments, the researchers divided 37 participants into three groups – healthy (12), those who had two or more identified risk factors but without clinical diagnosed cardiovascular disease (15), and those with known disease (10).

To determine how arteries responded physiologically under different circumstances, Allen used ultrasound to visualize the brachial artery, the major artery of the arm. The ultrasound images can then be analyzed to detect even the slightest changes in the diameter of the artery.

The researchers made detailed measurements at three time points – baseline, while the artery was being occluded by a tourniquet, and after the tourniquet was released.

"When the tourniquet is loosened, the resulting increased blood flow causes physical shear stress to the endothelium," Allen explained. "A healthy artery should be able to react to the increased blood by dilating. Conversely, an unhealthy or diseased artery will not be able to respond as well. This response of the endothelium is regulated in part by nitric oxide."

While the diameters of arteries in all three groups increased, the healthy group saw the largest percentage increase after 60 seconds, possibly indicating greater endothelial health and nitric oxide production.

To better understand the biochemical responses in the patients, Allen then took blood samples from all the participants at rest, immediately following a strenuous exercise test, and then ten minutes after exercise completion.

"The group of healthy participants was the only one that saw an increase in systemic nitric oxide during the recovery period after exercise," Allen explained. "We also found that the reactivity of the brachial artery was greater in the healthy patients when compared to those with cardiovascular disease."

Allen then sought to discover whether a sustained program of exercise had any effect on nitric oxide production and reactivity of the brachial artery. So, he followed seven of the participants in the "at-risk" group during six months of exercise carried out on cycle ergometers, treadmills or elliptical trainers in a supervised setting. After six months, the researchers performed the same series of ultrasound and biochemical tests again.

After the exercise period, the at-risk patients had a significant increase in nitric oxide metabolite production during the recovery period after exercise, as well as an almost doubling of the brachial artery reactivity, Allen said.

"First, it appears that a nitric oxide metabolite measured in the blood after exercise may discriminate between healthy patients and those with cardiovascular disease and is related with a physiological response of the artery diameter," Allen said. "Also, these biochemical and physiological markers can be positively influenced by exercise in patients who are at risk for cardiovascular disease."

This pilot project was funded by Duke’s division of cardiology. Joining Allen was Frederick Cobb, M.D., from Duke, and Andrew Gow, Ph.D., Children’s Hospital of Philadelphia.

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7211

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>