Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Researchers Link Nitric Oxide, Vessel Health

24.11.2003


Jason Allen, Ph.D., conducting a study of the brachial artery in the arm
PHOTO CREDIT: Duke University Medical Center


Duke University Medical Center researchers have shown an association between changes in nitrate, a biochemical marker of nitric oxide production, and physiological changes in arteries’ reaction to stress. They hope their discovery could eventually lead to a non-invasive method of determining which patients are at risk for developing cardiovascular disease.

Such a simple diagnostic is important, they said, because up to half of patients who develop heart disease do not have the typical risk factors. Furthermore, using this new approach, the researchers demonstrated that exercise improved the marker in patients at risk for developing cardiovascular disease.

In their pilot study, the researchers linked the systemic production of nitric oxide, a chemical known to play a key role in controlling the ability of arteries to constrict or relax, with changes in the endothelial lining of arteries after being stressed.



"This is the first study to attempt to link whole body production of nitric oxide with regional endothelial function," said Jason Allen, Ph.D., who presented the results of the Duke study today (Nov. 22, 2003) during the 10th annual scientific sessions of the Society for Free Radical Biology and Medicine. "Both measures were found to discriminate between healthy participants and those with diagnosed cardiovascular disease."

In addition to its ability to dilate arteries, nitric oxide has other properties that protect against cardiovascular disease, such as inhibiting blood platelet clumping, preventing smooth muscle proliferation within the artery and inhibiting the immune response.

On the other hand, other risk factors, such as diabetes, high blood pressure, mental stress and smoking can reduce nitric oxide’s protective properties, said the researchers. It is believed that these patients produce more oxygen free radicals, impairing the ability of the body to respond appropriately to nitric oxide. These oxygen free radicals are highly reactive chemicals that are the potentially destructive byproducts of the disease process.

In their experiments, the researchers divided 37 participants into three groups – healthy (12), those who had two or more identified risk factors but without clinical diagnosed cardiovascular disease (15), and those with known disease (10).

To determine how arteries responded physiologically under different circumstances, Allen used ultrasound to visualize the brachial artery, the major artery of the arm. The ultrasound images can then be analyzed to detect even the slightest changes in the diameter of the artery.

The researchers made detailed measurements at three time points – baseline, while the artery was being occluded by a tourniquet, and after the tourniquet was released.

"When the tourniquet is loosened, the resulting increased blood flow causes physical shear stress to the endothelium," Allen explained. "A healthy artery should be able to react to the increased blood by dilating. Conversely, an unhealthy or diseased artery will not be able to respond as well. This response of the endothelium is regulated in part by nitric oxide."

While the diameters of arteries in all three groups increased, the healthy group saw the largest percentage increase after 60 seconds, possibly indicating greater endothelial health and nitric oxide production.

To better understand the biochemical responses in the patients, Allen then took blood samples from all the participants at rest, immediately following a strenuous exercise test, and then ten minutes after exercise completion.

"The group of healthy participants was the only one that saw an increase in systemic nitric oxide during the recovery period after exercise," Allen explained. "We also found that the reactivity of the brachial artery was greater in the healthy patients when compared to those with cardiovascular disease."

Allen then sought to discover whether a sustained program of exercise had any effect on nitric oxide production and reactivity of the brachial artery. So, he followed seven of the participants in the "at-risk" group during six months of exercise carried out on cycle ergometers, treadmills or elliptical trainers in a supervised setting. After six months, the researchers performed the same series of ultrasound and biochemical tests again.

After the exercise period, the at-risk patients had a significant increase in nitric oxide metabolite production during the recovery period after exercise, as well as an almost doubling of the brachial artery reactivity, Allen said.

"First, it appears that a nitric oxide metabolite measured in the blood after exercise may discriminate between healthy patients and those with cardiovascular disease and is related with a physiological response of the artery diameter," Allen said. "Also, these biochemical and physiological markers can be positively influenced by exercise in patients who are at risk for cardiovascular disease."

This pilot project was funded by Duke’s division of cardiology. Joining Allen was Frederick Cobb, M.D., from Duke, and Andrew Gow, Ph.D., Children’s Hospital of Philadelphia.

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7211

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>