Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Researchers Link Nitric Oxide, Vessel Health

24.11.2003


Jason Allen, Ph.D., conducting a study of the brachial artery in the arm
PHOTO CREDIT: Duke University Medical Center


Duke University Medical Center researchers have shown an association between changes in nitrate, a biochemical marker of nitric oxide production, and physiological changes in arteries’ reaction to stress. They hope their discovery could eventually lead to a non-invasive method of determining which patients are at risk for developing cardiovascular disease.

Such a simple diagnostic is important, they said, because up to half of patients who develop heart disease do not have the typical risk factors. Furthermore, using this new approach, the researchers demonstrated that exercise improved the marker in patients at risk for developing cardiovascular disease.

In their pilot study, the researchers linked the systemic production of nitric oxide, a chemical known to play a key role in controlling the ability of arteries to constrict or relax, with changes in the endothelial lining of arteries after being stressed.



"This is the first study to attempt to link whole body production of nitric oxide with regional endothelial function," said Jason Allen, Ph.D., who presented the results of the Duke study today (Nov. 22, 2003) during the 10th annual scientific sessions of the Society for Free Radical Biology and Medicine. "Both measures were found to discriminate between healthy participants and those with diagnosed cardiovascular disease."

In addition to its ability to dilate arteries, nitric oxide has other properties that protect against cardiovascular disease, such as inhibiting blood platelet clumping, preventing smooth muscle proliferation within the artery and inhibiting the immune response.

On the other hand, other risk factors, such as diabetes, high blood pressure, mental stress and smoking can reduce nitric oxide’s protective properties, said the researchers. It is believed that these patients produce more oxygen free radicals, impairing the ability of the body to respond appropriately to nitric oxide. These oxygen free radicals are highly reactive chemicals that are the potentially destructive byproducts of the disease process.

In their experiments, the researchers divided 37 participants into three groups – healthy (12), those who had two or more identified risk factors but without clinical diagnosed cardiovascular disease (15), and those with known disease (10).

To determine how arteries responded physiologically under different circumstances, Allen used ultrasound to visualize the brachial artery, the major artery of the arm. The ultrasound images can then be analyzed to detect even the slightest changes in the diameter of the artery.

The researchers made detailed measurements at three time points – baseline, while the artery was being occluded by a tourniquet, and after the tourniquet was released.

"When the tourniquet is loosened, the resulting increased blood flow causes physical shear stress to the endothelium," Allen explained. "A healthy artery should be able to react to the increased blood by dilating. Conversely, an unhealthy or diseased artery will not be able to respond as well. This response of the endothelium is regulated in part by nitric oxide."

While the diameters of arteries in all three groups increased, the healthy group saw the largest percentage increase after 60 seconds, possibly indicating greater endothelial health and nitric oxide production.

To better understand the biochemical responses in the patients, Allen then took blood samples from all the participants at rest, immediately following a strenuous exercise test, and then ten minutes after exercise completion.

"The group of healthy participants was the only one that saw an increase in systemic nitric oxide during the recovery period after exercise," Allen explained. "We also found that the reactivity of the brachial artery was greater in the healthy patients when compared to those with cardiovascular disease."

Allen then sought to discover whether a sustained program of exercise had any effect on nitric oxide production and reactivity of the brachial artery. So, he followed seven of the participants in the "at-risk" group during six months of exercise carried out on cycle ergometers, treadmills or elliptical trainers in a supervised setting. After six months, the researchers performed the same series of ultrasound and biochemical tests again.

After the exercise period, the at-risk patients had a significant increase in nitric oxide metabolite production during the recovery period after exercise, as well as an almost doubling of the brachial artery reactivity, Allen said.

"First, it appears that a nitric oxide metabolite measured in the blood after exercise may discriminate between healthy patients and those with cardiovascular disease and is related with a physiological response of the artery diameter," Allen said. "Also, these biochemical and physiological markers can be positively influenced by exercise in patients who are at risk for cardiovascular disease."

This pilot project was funded by Duke’s division of cardiology. Joining Allen was Frederick Cobb, M.D., from Duke, and Andrew Gow, Ph.D., Children’s Hospital of Philadelphia.

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7211

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>