Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain’s ’master molecule’ produces same behavior in mice from three different psychostimulant drugs

21.11.2003


Findings may lead to new drug targets for treating schizophrenia



A mouse study reported in this week’s Science magazine shows that three drugs, each acting on a different chemical transmitter in the brain, all produce the same schizophrenia-like symptoms by acting on a single "master molecule" in the brain.
The findings, reported by researchers at Rockefeller University with collaboration from three pharmaceutical and biotech companies, provides, for the first time, a cellular model detailing how this crucial protein, known as DARPP-32, interacts with multiple neurotransmitter systems to produce behavior.

The scientists demonstrate that DARPP-32 acts like the thin neck in an hourglass, through which all signals taken into a nerve cell must pass and be processed, producing a wide variety of biochemical reactions. In this case, three different drugs of abuse, LSD, PCP ("angel dust") and amphetamine, work on three different neurotransmitters, serotonin, glutamate, and dopamine, respectively. All three drugs, which are classified as psychotomimetics or psychostimulants, are processed within the DARPP-32 hourglass neck through the same pathway, thus producing very similar physiological symptoms.



"For the first time, we can explain through a molecular model why these drugs all produce the same kind of behavioral symptoms," says the study’s first author, Per Svenningsson, M.D., Ph.D., a research assistant professor in the Laboratory of Molecular and Cellular Neuroscience, headed by Paul Greengard, Ph.D.

Clinically, the study does not suggest that DARPP-32 is the root cause of schizophrenia, but it does provide new avenues in which to treat the disease, says Greengard, Vincent Astor Professor at Rockefeller and the study’s principal investigator.

By experimentally blocking the function of one of the 205 amino acids that make up DARPP-32, the research team was able to abolish the effects of the drugs, all of which have long been known to produce schizophrenia-like behavior in both mice and humans.

"This is remarkable because it shows that a single amino acid on a single protein, by being altered, can abolish the effects of these psychotomimetic drugs on behavior," says Greengard, who shared the 2000 Nobel Prize in Medicine or Physiology for his work on neurotransmitters and DARPP-32. "The research certainly indicates new targets for the development of antipsychotic drugs."

The study also answers a long-standing debate in psychiatry as to which neurotransmitter is primarily responsible for schizophrenia, says Greengard, because researchers have known that drugs like LSD, PCP and amphetamines, which act on different transmitters, create the same psychoses as seen in schizophrenia.

"It turns out everyone was right, because each of these drugs work on a common pathway regulated by DARPP-32," says Greengard.

Previous research by Svenningsson and Greengard also has demonstrated that DARPP-32 regulates the actions of medications such as Prozac, to treat depression, as well as drugs of abuse such as cocaine, opiates and nicotine.

"We have begun to believe that DARPP-32 is really a master molecule that integrates information coming in from all parts of the brain and is involved in mediating and regulating the actions of many, many neurotransmitters," says Greengard.

The investigators knew that, like many such proteins, DARPP-32 can be activated by the addition of a phosphate molecule (a process called "phosphorylation") or by removal of a phosphate molecule ("dephosphorylation") on specific amino acid sites.

In the findings reported in Science, the Rockefeller team found that DARPP-32 was phosphorylated or dephosphorylated at three sites by the studied psychotomimetics, in a pattern that worked together to inhibit an enzyme downstream of DARPP-32 called protein phosphatase-1 (PP-1). PP-1 helps regulate its own series of biochemical reactions that lead to physiological responses.

In order to understand the precise functional importance of these three phosphorylation sites, the scientists created a series of "knockin" mice, in which each of these sites on the DARPP-32 protein were mutated. The behavioral responsively to LSD, PCP and amphetamine were thereafter compared between these mutant mice and normal mice. It turned out that single mutations in the amino acid sequence of DARPP-32 virtually abolished the behavioral actions of the psychotomimetics.

Schizophrenia-like symptoms such as repetitive movements and sensory perception defects induced by the psychotomimetics were strongly attenuated in two of the three different mutant mouse lines, implicating a critical involvement of two distinct, but interacting, phosphorylation sites of DARPP-32 in the actions of LSD, PCP and amphetamine, says Svenningsson.

Ongoing research is aimed at further understanding how DARPP-32 can process a wide variety of neurotransmitters that affect behavior, he says. "This master molecule seems to be involved in many behaviors, including those related to mood and the way we perceive the world," says Svenningsson.


Co-authors of the study, funded by the National Institutes of Health, include researchers from Rockefeller University (Robert Carruthers and Ilan Rachleff), Eli Lilly and Company (Eleni Tzavara, David McKinzie, George Nomikos), Lexicon Genetics, Inc. (Sigrid Wattler and Michael Nehls) and Intra-Cellular Therapies (Allen Fienberg). Fienberg also is affiliated with Rockefeller University.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>