Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain’s ’master molecule’ produces same behavior in mice from three different psychostimulant drugs

21.11.2003


Findings may lead to new drug targets for treating schizophrenia



A mouse study reported in this week’s Science magazine shows that three drugs, each acting on a different chemical transmitter in the brain, all produce the same schizophrenia-like symptoms by acting on a single "master molecule" in the brain.
The findings, reported by researchers at Rockefeller University with collaboration from three pharmaceutical and biotech companies, provides, for the first time, a cellular model detailing how this crucial protein, known as DARPP-32, interacts with multiple neurotransmitter systems to produce behavior.

The scientists demonstrate that DARPP-32 acts like the thin neck in an hourglass, through which all signals taken into a nerve cell must pass and be processed, producing a wide variety of biochemical reactions. In this case, three different drugs of abuse, LSD, PCP ("angel dust") and amphetamine, work on three different neurotransmitters, serotonin, glutamate, and dopamine, respectively. All three drugs, which are classified as psychotomimetics or psychostimulants, are processed within the DARPP-32 hourglass neck through the same pathway, thus producing very similar physiological symptoms.



"For the first time, we can explain through a molecular model why these drugs all produce the same kind of behavioral symptoms," says the study’s first author, Per Svenningsson, M.D., Ph.D., a research assistant professor in the Laboratory of Molecular and Cellular Neuroscience, headed by Paul Greengard, Ph.D.

Clinically, the study does not suggest that DARPP-32 is the root cause of schizophrenia, but it does provide new avenues in which to treat the disease, says Greengard, Vincent Astor Professor at Rockefeller and the study’s principal investigator.

By experimentally blocking the function of one of the 205 amino acids that make up DARPP-32, the research team was able to abolish the effects of the drugs, all of which have long been known to produce schizophrenia-like behavior in both mice and humans.

"This is remarkable because it shows that a single amino acid on a single protein, by being altered, can abolish the effects of these psychotomimetic drugs on behavior," says Greengard, who shared the 2000 Nobel Prize in Medicine or Physiology for his work on neurotransmitters and DARPP-32. "The research certainly indicates new targets for the development of antipsychotic drugs."

The study also answers a long-standing debate in psychiatry as to which neurotransmitter is primarily responsible for schizophrenia, says Greengard, because researchers have known that drugs like LSD, PCP and amphetamines, which act on different transmitters, create the same psychoses as seen in schizophrenia.

"It turns out everyone was right, because each of these drugs work on a common pathway regulated by DARPP-32," says Greengard.

Previous research by Svenningsson and Greengard also has demonstrated that DARPP-32 regulates the actions of medications such as Prozac, to treat depression, as well as drugs of abuse such as cocaine, opiates and nicotine.

"We have begun to believe that DARPP-32 is really a master molecule that integrates information coming in from all parts of the brain and is involved in mediating and regulating the actions of many, many neurotransmitters," says Greengard.

The investigators knew that, like many such proteins, DARPP-32 can be activated by the addition of a phosphate molecule (a process called "phosphorylation") or by removal of a phosphate molecule ("dephosphorylation") on specific amino acid sites.

In the findings reported in Science, the Rockefeller team found that DARPP-32 was phosphorylated or dephosphorylated at three sites by the studied psychotomimetics, in a pattern that worked together to inhibit an enzyme downstream of DARPP-32 called protein phosphatase-1 (PP-1). PP-1 helps regulate its own series of biochemical reactions that lead to physiological responses.

In order to understand the precise functional importance of these three phosphorylation sites, the scientists created a series of "knockin" mice, in which each of these sites on the DARPP-32 protein were mutated. The behavioral responsively to LSD, PCP and amphetamine were thereafter compared between these mutant mice and normal mice. It turned out that single mutations in the amino acid sequence of DARPP-32 virtually abolished the behavioral actions of the psychotomimetics.

Schizophrenia-like symptoms such as repetitive movements and sensory perception defects induced by the psychotomimetics were strongly attenuated in two of the three different mutant mouse lines, implicating a critical involvement of two distinct, but interacting, phosphorylation sites of DARPP-32 in the actions of LSD, PCP and amphetamine, says Svenningsson.

Ongoing research is aimed at further understanding how DARPP-32 can process a wide variety of neurotransmitters that affect behavior, he says. "This master molecule seems to be involved in many behaviors, including those related to mood and the way we perceive the world," says Svenningsson.


Co-authors of the study, funded by the National Institutes of Health, include researchers from Rockefeller University (Robert Carruthers and Ilan Rachleff), Eli Lilly and Company (Eleni Tzavara, David McKinzie, George Nomikos), Lexicon Genetics, Inc. (Sigrid Wattler and Michael Nehls) and Intra-Cellular Therapies (Allen Fienberg). Fienberg also is affiliated with Rockefeller University.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>