Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique may diagnose breast cancer without biopsy

21.11.2003


A technique that combines high-level magnetic resonance imaging (MRI) with a new spectroscopic method may result in an accurate, non-invasive way to make breast cancer diagnoses. In this technique, MRI is used to detect breast lumps, while spectroscopy measures molecules known to accumulate in cancer cells.



According to a study in the Nov. 21 online version of the journal Magnetic Resonance in Medicine, researchers at The Cancer Center at the University of Minnesota have developed a magnetic resonance spectroscopy (MRS) method that quantifies breast tissue levels of choline (tCho) compounds, which the study found to be elevated in malignant lesions. Previous investigations of the diagnostic utility of MRS did not quantify tCho levels in breast masses, which limited the ability to differentiate between benign and malignant lumps detected by MRI.

"We found tCho concentrations to be significantly higher in malignancies than in benign lumps and normal breast tissues using this quantitative method," said lead investigator Michael Garwood, Ph.D., professor of radiology and Cancer Center member. "Using high magnetic fields and this spectroscopic technique may produce a powerful way to diagnose breast cancer and to monitor its response to treatment. We hope this technique will eventually be used to avoid unnecessary biopsy."


The application of MRS to breast cancer has unique technical demands. The problem lies in the composition of the breast, whose irregular distribution of fatty and glandular tissue makes it difficult to establish reference points against which to measure tCho levels. This method accounts for these tissue variations, using water as a reference compound and a mathematical approach to help "fit" or see choline levels relative to other compounds. This technique also exploits the increased sensitivity of a high magnetic field MR scanner, available only at a few locations in the world, including the University of Minnesota’s Center for Magnetic Resonance Research (CMRR).

So far the study has enrolled 105 subjects and measured tCho levels in normal breast tissue and in benign and malignant lesions. The study remains open to women who have a suspicious breast lump; however, MRI and MRS scanning must occur before a biopsy or surgery on the lump has been performed. To determine the accuracy of the test, tCho concentrations will be compared with the pathologic findings in the excised tissues. Women interested in participating in the study can call 612-273-1944.


Co-authors of this study are Patrick J. Bolan, B.S., Sina Meisamy, M.D., Eva H. Baker, M.D., Ph.D., Joseph Lin, Ph.D., Timothy Emory, M.D., Michael Nelson, M.D., Lenore I. Everson, M.D., and Douglas Yee, M.D.

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>