Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique may diagnose breast cancer without biopsy

21.11.2003


A technique that combines high-level magnetic resonance imaging (MRI) with a new spectroscopic method may result in an accurate, non-invasive way to make breast cancer diagnoses. In this technique, MRI is used to detect breast lumps, while spectroscopy measures molecules known to accumulate in cancer cells.



According to a study in the Nov. 21 online version of the journal Magnetic Resonance in Medicine, researchers at The Cancer Center at the University of Minnesota have developed a magnetic resonance spectroscopy (MRS) method that quantifies breast tissue levels of choline (tCho) compounds, which the study found to be elevated in malignant lesions. Previous investigations of the diagnostic utility of MRS did not quantify tCho levels in breast masses, which limited the ability to differentiate between benign and malignant lumps detected by MRI.

"We found tCho concentrations to be significantly higher in malignancies than in benign lumps and normal breast tissues using this quantitative method," said lead investigator Michael Garwood, Ph.D., professor of radiology and Cancer Center member. "Using high magnetic fields and this spectroscopic technique may produce a powerful way to diagnose breast cancer and to monitor its response to treatment. We hope this technique will eventually be used to avoid unnecessary biopsy."


The application of MRS to breast cancer has unique technical demands. The problem lies in the composition of the breast, whose irregular distribution of fatty and glandular tissue makes it difficult to establish reference points against which to measure tCho levels. This method accounts for these tissue variations, using water as a reference compound and a mathematical approach to help "fit" or see choline levels relative to other compounds. This technique also exploits the increased sensitivity of a high magnetic field MR scanner, available only at a few locations in the world, including the University of Minnesota’s Center for Magnetic Resonance Research (CMRR).

So far the study has enrolled 105 subjects and measured tCho levels in normal breast tissue and in benign and malignant lesions. The study remains open to women who have a suspicious breast lump; however, MRI and MRS scanning must occur before a biopsy or surgery on the lump has been performed. To determine the accuracy of the test, tCho concentrations will be compared with the pathologic findings in the excised tissues. Women interested in participating in the study can call 612-273-1944.


Co-authors of this study are Patrick J. Bolan, B.S., Sina Meisamy, M.D., Eva H. Baker, M.D., Ph.D., Joseph Lin, Ph.D., Timothy Emory, M.D., Michael Nelson, M.D., Lenore I. Everson, M.D., and Douglas Yee, M.D.

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>