Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique may diagnose breast cancer without biopsy

21.11.2003


A technique that combines high-level magnetic resonance imaging (MRI) with a new spectroscopic method may result in an accurate, non-invasive way to make breast cancer diagnoses. In this technique, MRI is used to detect breast lumps, while spectroscopy measures molecules known to accumulate in cancer cells.



According to a study in the Nov. 21 online version of the journal Magnetic Resonance in Medicine, researchers at The Cancer Center at the University of Minnesota have developed a magnetic resonance spectroscopy (MRS) method that quantifies breast tissue levels of choline (tCho) compounds, which the study found to be elevated in malignant lesions. Previous investigations of the diagnostic utility of MRS did not quantify tCho levels in breast masses, which limited the ability to differentiate between benign and malignant lumps detected by MRI.

"We found tCho concentrations to be significantly higher in malignancies than in benign lumps and normal breast tissues using this quantitative method," said lead investigator Michael Garwood, Ph.D., professor of radiology and Cancer Center member. "Using high magnetic fields and this spectroscopic technique may produce a powerful way to diagnose breast cancer and to monitor its response to treatment. We hope this technique will eventually be used to avoid unnecessary biopsy."


The application of MRS to breast cancer has unique technical demands. The problem lies in the composition of the breast, whose irregular distribution of fatty and glandular tissue makes it difficult to establish reference points against which to measure tCho levels. This method accounts for these tissue variations, using water as a reference compound and a mathematical approach to help "fit" or see choline levels relative to other compounds. This technique also exploits the increased sensitivity of a high magnetic field MR scanner, available only at a few locations in the world, including the University of Minnesota’s Center for Magnetic Resonance Research (CMRR).

So far the study has enrolled 105 subjects and measured tCho levels in normal breast tissue and in benign and malignant lesions. The study remains open to women who have a suspicious breast lump; however, MRI and MRS scanning must occur before a biopsy or surgery on the lump has been performed. To determine the accuracy of the test, tCho concentrations will be compared with the pathologic findings in the excised tissues. Women interested in participating in the study can call 612-273-1944.


Co-authors of this study are Patrick J. Bolan, B.S., Sina Meisamy, M.D., Eva H. Baker, M.D., Ph.D., Joseph Lin, Ph.D., Timothy Emory, M.D., Michael Nelson, M.D., Lenore I. Everson, M.D., and Douglas Yee, M.D.

Brenda Hudson | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>