Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gliomas’ ’molecular fingerprint’ predicts how aggressive tumor will be


Findings may help tailor treatment decisions for most common form of brain tumor

The most common form of primary brain tumor – glioma, affecting about 25,000 Americans each year – poses a dilemma for doctors and patients trying to make decisions about treatment. Many of these tumors will be particularly vicious, killing patients within months of diagnosis even in the face of the most vigorous therapy. Still others are less aggressive, but these can be difficult to distinguish under the microscope.

Now, scientists at the Vanderbilt-Ingram Cancer Center and the National Institutes of Health demonstrate that the "molecular fingerprint," or protein patterns, of gliomas can be used to classify tumors and predict their aggressiveness.

"This study is important because we show that the ’molecular fingerprint’ of the tumor can be used to assess the progression of disease and more importantly predict how aggressively it will behave," said Richard Caprioli, Ph.D., Stanley Cohen Professor of Biochemistry at Vanderbilt. "This is the necessary step toward the goal of predictive medicine, where clinicians would analyze an individual’s tumor, scientifically predict how it will behave and use that information to tailor treatment decisions," Findings by Caprioli and his colleagues are being reported today in Boston at the annual International Molecular Targets and Cancer Therapeutics: Discovery, Biology and Clinical Application," a meeting organized by the American Association for Cancer Research (AACR), the National Cancer Institute (NCI) and the European Organization for Research and Treatment of Cancer (EORTC).

The conference brings together 2,500 scientists and clinicians to share the latest information in the field known as molecular targeting, which offers the potential of a new generation of drugs to kill cancer cells with pinpoint accuracy.

Caprioli’s co-authors on the abstract include Dr. Robert J. Weil, formerly a Vanderbilt faculty member now with the National Institutes of Health, and Vanderbilt scientists Sarah A. Schwartz, Bill White, Juiming Li, Jason Moore, Bashar Shaktour, Paul Larsen and Yu Shyr.

The field of molecular targeting in cancer focuses on the proteins that are active in cells and involved in the development and spread of the disease. Simply put, proteins carry out al the work of the cell, at the instruction of the genes. Disease can occur when the intricate interplay of thousands of proteins goes awry; the goal of molecularly targeted therapy is to set the process right again in a way that specifically corrects the problem without causing damage to surrounding normal cells.

Using a process developed by Caprioli and refined for clinical application at Vanderbilt, the researchers used mass spectrometry to develop profiles of proteins active in 60 human brain samples. These included 19 samples of normal tissue and 15 grade II, 11 grade III and 15 grade IV gliomas.

The researchers identified more than 200 potential molecular markers that distinguished normal from malignant tissue and differentiated grade of tumor. With these protein profiles, they were also able to group tumors – with approximately 90 percent accuracy -- according to survival rate (15 biopsies from patients who survived less than one year and 26 from patients who survived more than one year).

"We want to be able to provide patients with a complete picture of how their tumor is expected to behave and how it is expected to respond to treatment," Caprioli said. "Then they an their doctors can make a truly informed decision, based in science, about how to treat or even whether to treat. Clinicians would be able to aggressively treat those cancers that are truly aggressive and in those that are not, avoid such powerful treatment and exposing patients to more risk than necessary." Caprioli and his colleagues have done similar work in lung cancer. Earlier this year, they reported identification of a specific pattern of 15 proteins that could be used to predict whether a group of patients would die within a year of diagnosis. That work was published in the journal Lancet.

The Vanderbilt-Ingram Cancer Center is the only National Cancer Institute-designated Comprehensive Cancer Center in Tennessee and one of only 39 in the United States. This designation is the highest awarded by the NCI, one of the National Institutes of Health and a leading authority on cancer. It recognizes excellence in all aspects of cancer research, the development of innovative new therapies and a demonstrated commitment to the community through education, information and outreach.

Cynthia Floyd Manley | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>