Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find radiation and blood vessel inhibitor more effective against brain tumors

20.11.2003


Combining radiation with an agent that blocks VEGF, a protein that promotes the development of blood vessels and the growth of cancerous tumors – a process known as angiogenesis – may be more effective against brain tumors than either treatment alone, researchers at Jefferson Medical College have found.



Scientists led by Phyllis Wachsberger, Ph.D., assistant professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Adam Dicker, M.D., associate professor of radiation oncology at Jefferson Medical College, looked at whether adding radiation changed the effectiveness of a drug called VEGF Trap on the growth of a common brain tumor, glioblastoma, in a mouse model. VEGF Trap is a protein engineered to block VEGF activity. The particular type of brain tumor expresses high levels of VEGF and is resistant to treatment with many other antiangiogenic drugs.

According to Dr. Dicker, who is also director of the Division of Experimental Radiation Oncology at Jefferson’s Kimmel Cancer Center, the findings indicate that radiation may in many cases substantially enhance the drug’s anti-tumor activity. In fact, research results from Jefferson and other laboratories indicate that VEGF Trap may be as much as 1,000 times more potent in controlling cancerous tumor growth than angiogenesis inhibitors now under review by the Food and Drug Administration, he says.


Dr. Wachsberger presents the group’s work November 19 at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics in Boston.

“These are the first studies showing a potential benefit of this agent and radiation,” Dr. Dicker says.

The scientists compared the effects of both small and large doses of VEGF Trap on tumor growth in mice that either had or didn’t have radiation treatments. In the study, radiation alone delayed tumor growth for 10 days more than control mice, to which no treatment had been given. Radiation plus low-dose VEGF Trap increased the growth delay by 20 to 25 days more than the control. High-dose VEGF Trap did even better, adding an extra 40 days of growth delay, though in this case the researchers didn’t see any benefit from adding radiation.

Next, says Dr. Dicker, the Jefferson group hopes to refine the use of radiation with VEGF Trap, including getting a better idea of specific doses and their timing and effectiveness.

Regeneron Pharmaceuticals, Inc., in Tarrytown, NY, funded the research

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17289

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>