Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find radiation and blood vessel inhibitor more effective against brain tumors

20.11.2003


Combining radiation with an agent that blocks VEGF, a protein that promotes the development of blood vessels and the growth of cancerous tumors – a process known as angiogenesis – may be more effective against brain tumors than either treatment alone, researchers at Jefferson Medical College have found.



Scientists led by Phyllis Wachsberger, Ph.D., assistant professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Adam Dicker, M.D., associate professor of radiation oncology at Jefferson Medical College, looked at whether adding radiation changed the effectiveness of a drug called VEGF Trap on the growth of a common brain tumor, glioblastoma, in a mouse model. VEGF Trap is a protein engineered to block VEGF activity. The particular type of brain tumor expresses high levels of VEGF and is resistant to treatment with many other antiangiogenic drugs.

According to Dr. Dicker, who is also director of the Division of Experimental Radiation Oncology at Jefferson’s Kimmel Cancer Center, the findings indicate that radiation may in many cases substantially enhance the drug’s anti-tumor activity. In fact, research results from Jefferson and other laboratories indicate that VEGF Trap may be as much as 1,000 times more potent in controlling cancerous tumor growth than angiogenesis inhibitors now under review by the Food and Drug Administration, he says.


Dr. Wachsberger presents the group’s work November 19 at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics in Boston.

“These are the first studies showing a potential benefit of this agent and radiation,” Dr. Dicker says.

The scientists compared the effects of both small and large doses of VEGF Trap on tumor growth in mice that either had or didn’t have radiation treatments. In the study, radiation alone delayed tumor growth for 10 days more than control mice, to which no treatment had been given. Radiation plus low-dose VEGF Trap increased the growth delay by 20 to 25 days more than the control. High-dose VEGF Trap did even better, adding an extra 40 days of growth delay, though in this case the researchers didn’t see any benefit from adding radiation.

Next, says Dr. Dicker, the Jefferson group hopes to refine the use of radiation with VEGF Trap, including getting a better idea of specific doses and their timing and effectiveness.

Regeneron Pharmaceuticals, Inc., in Tarrytown, NY, funded the research

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17289

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>