Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading the way in novel anti-cancer research

19.11.2003


Key AstraZeneca data presented at the AACR-NCI-EORTC meeting



New research presented today at an official AACR-NCI-EORTC* press conference highlights the potential of a new approach to fighting cancer -- inhibition of Aurora kinases. The study, carried out by AstraZeneca, represents part of a body of innovative research and discovery work undertaken by the company as part of a broad based development program of novel cancer therapies. Key research presented this week also includes results from a study combining two agents developed by AstraZeneca: an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and the vascular targeting agent ZD6126.

New frontiers in cancer biology – inhibition of Aurora kinases:


The Aurora kinase family is important in regulating mitosis and cell division. Because these kinases are only expressed in cells that are actively dividing, they could be an important new target in cancer. Aurora kinases are commonly over expressed in breast, colon, pancreas and bladder tumors and this is correlated with poor prognosis in these diseases. AstraZeneca scientists have discovered selective and potent inhibitors of Aurora kinase activity that may have potential application in human cancer treatment. These inhibitors of Aurora kinase are being investigated to ascertain their potential in the treatment of cancer.

"Through cutting-edge research and development, AstraZeneca hopes to achieve a better understanding of Aurora kinases and their regulation, which could in time be a basis for treating or even preventing cancer," said George Blackledge, Vice President, Medical Director of Oncology, AstraZeneca. "This is part of a broad based development program in cell cycle directed therapies."

Leading the way in combining novel anti-cancer approaches:

New pre-clinical research presented at the meeting shows that combining a vascular targeting agent with an EGFR tyrosine kinase inhibitor may result in greater anti-tumor activity than either agent alone. These agents attack the tumor by different mechanisms.

Tumor blood vessels differ significantly from normal blood vessels. The endothelial cells which line their vessel walls retain the characteristics of immature, newly formed dividing cells and appear to depend heavily on a tubulin cytoskeleton to maintain their shape. Vascular targeting agents are designed to disrupt this cytoskeleton, causing the endothelial cells to change shape from flat to round, resulting in damage to the blood vessel lining. This causes vessel congestion and cessation of blood flow. The tumor is thus starved of oxygen and nutrients, while its waste products start to build up to toxic levels. As a result, much of the tumor dies.

The potential of ZD6126, a vascular targeting agent, and an EGFR tyrosine kinase inhibitor to work together in combination as a cancer treatment approach was evaluated in preclinical work being presented today at this meeting. Based on the results seen in these models, clinical investigation of this drug combination is about to begin.

Also presented at the meeting, University of Florida medical scientists reported the results of the combination of ZD6126 with another AstraZeneca novel anticancer agent in development known as ZD6474, an anti-angiogenesis agent. Anti-angiogenesis agents being developed by AstraZeneca are designed to block the vascular endothelial growth factor (VEGF) signaling pathway. This pathway is a critical step in angiogenesis, the process by which tumors stimulate the formation of new blood vessels. Based on results from preclinical studies, clinical investigations of the combination of vascular targeting agents and anti-angiogenesis agents are planned.

Other novel approaches:

AstraZeneca has a broad portfolio of novel cancer agents in early development for the potential treatment of a wide range of tumors. New pre-clinical data on several AstraZeneca novel agents have been presented at the AACR/NCI/EORTC meeting in Boston this week:
  • An oral prenylation inhibitor treatment that prevents the activation of a number of growth promoting proteins and thus prevents cancer cells from dividing (proliferating)
  • An orally active Src kinase inhibitor, which reduces the ability of cancer cells to invade normal tissues, preventing tumors from spreading
  • CDK (cyclin dependent kinase) and Aurora kinase inhibitors, which interfere with crucial steps in cell division and inhibit the proliferation of cancer cells

About AstraZeneca:

AstraZeneca is a major international healthcare business engaged in the research, development, manufacture and marketing of prescription pharmaceuticals and the supply of healthcare services. It is one of the top five pharmaceutical companies in the world with healthcare sales of over $17.8 billion and leading positions in sales of gastrointestinal, oncology, cardiovascular, neuroscience and respiratory products. In the United States, AstraZeneca is a $9.3 billion healthcare business with more than 12,000 employees. AstraZeneca is listed in the Dow Jones Sustainability Index (Global and European) as well as the FTSE4Good Index.

For more information about AstraZeneca, please visit www.astrazeneca-us.com

*AACR: American Association for Cancer Research; NCI: National Cancer Institute; EORTC: European Organization for Research and Treatment of Cancer.

Emily Denney | EurekAlert!
Further information:
http://www.astrazeneca.com/

More articles from Health and Medicine:

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>