Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading the way in novel anti-cancer research

19.11.2003


Key AstraZeneca data presented at the AACR-NCI-EORTC meeting



New research presented today at an official AACR-NCI-EORTC* press conference highlights the potential of a new approach to fighting cancer -- inhibition of Aurora kinases. The study, carried out by AstraZeneca, represents part of a body of innovative research and discovery work undertaken by the company as part of a broad based development program of novel cancer therapies. Key research presented this week also includes results from a study combining two agents developed by AstraZeneca: an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and the vascular targeting agent ZD6126.

New frontiers in cancer biology – inhibition of Aurora kinases:


The Aurora kinase family is important in regulating mitosis and cell division. Because these kinases are only expressed in cells that are actively dividing, they could be an important new target in cancer. Aurora kinases are commonly over expressed in breast, colon, pancreas and bladder tumors and this is correlated with poor prognosis in these diseases. AstraZeneca scientists have discovered selective and potent inhibitors of Aurora kinase activity that may have potential application in human cancer treatment. These inhibitors of Aurora kinase are being investigated to ascertain their potential in the treatment of cancer.

"Through cutting-edge research and development, AstraZeneca hopes to achieve a better understanding of Aurora kinases and their regulation, which could in time be a basis for treating or even preventing cancer," said George Blackledge, Vice President, Medical Director of Oncology, AstraZeneca. "This is part of a broad based development program in cell cycle directed therapies."

Leading the way in combining novel anti-cancer approaches:

New pre-clinical research presented at the meeting shows that combining a vascular targeting agent with an EGFR tyrosine kinase inhibitor may result in greater anti-tumor activity than either agent alone. These agents attack the tumor by different mechanisms.

Tumor blood vessels differ significantly from normal blood vessels. The endothelial cells which line their vessel walls retain the characteristics of immature, newly formed dividing cells and appear to depend heavily on a tubulin cytoskeleton to maintain their shape. Vascular targeting agents are designed to disrupt this cytoskeleton, causing the endothelial cells to change shape from flat to round, resulting in damage to the blood vessel lining. This causes vessel congestion and cessation of blood flow. The tumor is thus starved of oxygen and nutrients, while its waste products start to build up to toxic levels. As a result, much of the tumor dies.

The potential of ZD6126, a vascular targeting agent, and an EGFR tyrosine kinase inhibitor to work together in combination as a cancer treatment approach was evaluated in preclinical work being presented today at this meeting. Based on the results seen in these models, clinical investigation of this drug combination is about to begin.

Also presented at the meeting, University of Florida medical scientists reported the results of the combination of ZD6126 with another AstraZeneca novel anticancer agent in development known as ZD6474, an anti-angiogenesis agent. Anti-angiogenesis agents being developed by AstraZeneca are designed to block the vascular endothelial growth factor (VEGF) signaling pathway. This pathway is a critical step in angiogenesis, the process by which tumors stimulate the formation of new blood vessels. Based on results from preclinical studies, clinical investigations of the combination of vascular targeting agents and anti-angiogenesis agents are planned.

Other novel approaches:

AstraZeneca has a broad portfolio of novel cancer agents in early development for the potential treatment of a wide range of tumors. New pre-clinical data on several AstraZeneca novel agents have been presented at the AACR/NCI/EORTC meeting in Boston this week:
  • An oral prenylation inhibitor treatment that prevents the activation of a number of growth promoting proteins and thus prevents cancer cells from dividing (proliferating)
  • An orally active Src kinase inhibitor, which reduces the ability of cancer cells to invade normal tissues, preventing tumors from spreading
  • CDK (cyclin dependent kinase) and Aurora kinase inhibitors, which interfere with crucial steps in cell division and inhibit the proliferation of cancer cells

About AstraZeneca:

AstraZeneca is a major international healthcare business engaged in the research, development, manufacture and marketing of prescription pharmaceuticals and the supply of healthcare services. It is one of the top five pharmaceutical companies in the world with healthcare sales of over $17.8 billion and leading positions in sales of gastrointestinal, oncology, cardiovascular, neuroscience and respiratory products. In the United States, AstraZeneca is a $9.3 billion healthcare business with more than 12,000 employees. AstraZeneca is listed in the Dow Jones Sustainability Index (Global and European) as well as the FTSE4Good Index.

For more information about AstraZeneca, please visit www.astrazeneca-us.com

*AACR: American Association for Cancer Research; NCI: National Cancer Institute; EORTC: European Organization for Research and Treatment of Cancer.

Emily Denney | EurekAlert!
Further information:
http://www.astrazeneca.com/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>