Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading the way in novel anti-cancer research

19.11.2003


Key AstraZeneca data presented at the AACR-NCI-EORTC meeting



New research presented today at an official AACR-NCI-EORTC* press conference highlights the potential of a new approach to fighting cancer -- inhibition of Aurora kinases. The study, carried out by AstraZeneca, represents part of a body of innovative research and discovery work undertaken by the company as part of a broad based development program of novel cancer therapies. Key research presented this week also includes results from a study combining two agents developed by AstraZeneca: an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and the vascular targeting agent ZD6126.

New frontiers in cancer biology – inhibition of Aurora kinases:


The Aurora kinase family is important in regulating mitosis and cell division. Because these kinases are only expressed in cells that are actively dividing, they could be an important new target in cancer. Aurora kinases are commonly over expressed in breast, colon, pancreas and bladder tumors and this is correlated with poor prognosis in these diseases. AstraZeneca scientists have discovered selective and potent inhibitors of Aurora kinase activity that may have potential application in human cancer treatment. These inhibitors of Aurora kinase are being investigated to ascertain their potential in the treatment of cancer.

"Through cutting-edge research and development, AstraZeneca hopes to achieve a better understanding of Aurora kinases and their regulation, which could in time be a basis for treating or even preventing cancer," said George Blackledge, Vice President, Medical Director of Oncology, AstraZeneca. "This is part of a broad based development program in cell cycle directed therapies."

Leading the way in combining novel anti-cancer approaches:

New pre-clinical research presented at the meeting shows that combining a vascular targeting agent with an EGFR tyrosine kinase inhibitor may result in greater anti-tumor activity than either agent alone. These agents attack the tumor by different mechanisms.

Tumor blood vessels differ significantly from normal blood vessels. The endothelial cells which line their vessel walls retain the characteristics of immature, newly formed dividing cells and appear to depend heavily on a tubulin cytoskeleton to maintain their shape. Vascular targeting agents are designed to disrupt this cytoskeleton, causing the endothelial cells to change shape from flat to round, resulting in damage to the blood vessel lining. This causes vessel congestion and cessation of blood flow. The tumor is thus starved of oxygen and nutrients, while its waste products start to build up to toxic levels. As a result, much of the tumor dies.

The potential of ZD6126, a vascular targeting agent, and an EGFR tyrosine kinase inhibitor to work together in combination as a cancer treatment approach was evaluated in preclinical work being presented today at this meeting. Based on the results seen in these models, clinical investigation of this drug combination is about to begin.

Also presented at the meeting, University of Florida medical scientists reported the results of the combination of ZD6126 with another AstraZeneca novel anticancer agent in development known as ZD6474, an anti-angiogenesis agent. Anti-angiogenesis agents being developed by AstraZeneca are designed to block the vascular endothelial growth factor (VEGF) signaling pathway. This pathway is a critical step in angiogenesis, the process by which tumors stimulate the formation of new blood vessels. Based on results from preclinical studies, clinical investigations of the combination of vascular targeting agents and anti-angiogenesis agents are planned.

Other novel approaches:

AstraZeneca has a broad portfolio of novel cancer agents in early development for the potential treatment of a wide range of tumors. New pre-clinical data on several AstraZeneca novel agents have been presented at the AACR/NCI/EORTC meeting in Boston this week:
  • An oral prenylation inhibitor treatment that prevents the activation of a number of growth promoting proteins and thus prevents cancer cells from dividing (proliferating)
  • An orally active Src kinase inhibitor, which reduces the ability of cancer cells to invade normal tissues, preventing tumors from spreading
  • CDK (cyclin dependent kinase) and Aurora kinase inhibitors, which interfere with crucial steps in cell division and inhibit the proliferation of cancer cells

About AstraZeneca:

AstraZeneca is a major international healthcare business engaged in the research, development, manufacture and marketing of prescription pharmaceuticals and the supply of healthcare services. It is one of the top five pharmaceutical companies in the world with healthcare sales of over $17.8 billion and leading positions in sales of gastrointestinal, oncology, cardiovascular, neuroscience and respiratory products. In the United States, AstraZeneca is a $9.3 billion healthcare business with more than 12,000 employees. AstraZeneca is listed in the Dow Jones Sustainability Index (Global and European) as well as the FTSE4Good Index.

For more information about AstraZeneca, please visit www.astrazeneca-us.com

*AACR: American Association for Cancer Research; NCI: National Cancer Institute; EORTC: European Organization for Research and Treatment of Cancer.

Emily Denney | EurekAlert!
Further information:
http://www.astrazeneca.com/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>