Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leading the way in novel anti-cancer research

19.11.2003


Key AstraZeneca data presented at the AACR-NCI-EORTC meeting



New research presented today at an official AACR-NCI-EORTC* press conference highlights the potential of a new approach to fighting cancer -- inhibition of Aurora kinases. The study, carried out by AstraZeneca, represents part of a body of innovative research and discovery work undertaken by the company as part of a broad based development program of novel cancer therapies. Key research presented this week also includes results from a study combining two agents developed by AstraZeneca: an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor and the vascular targeting agent ZD6126.

New frontiers in cancer biology – inhibition of Aurora kinases:


The Aurora kinase family is important in regulating mitosis and cell division. Because these kinases are only expressed in cells that are actively dividing, they could be an important new target in cancer. Aurora kinases are commonly over expressed in breast, colon, pancreas and bladder tumors and this is correlated with poor prognosis in these diseases. AstraZeneca scientists have discovered selective and potent inhibitors of Aurora kinase activity that may have potential application in human cancer treatment. These inhibitors of Aurora kinase are being investigated to ascertain their potential in the treatment of cancer.

"Through cutting-edge research and development, AstraZeneca hopes to achieve a better understanding of Aurora kinases and their regulation, which could in time be a basis for treating or even preventing cancer," said George Blackledge, Vice President, Medical Director of Oncology, AstraZeneca. "This is part of a broad based development program in cell cycle directed therapies."

Leading the way in combining novel anti-cancer approaches:

New pre-clinical research presented at the meeting shows that combining a vascular targeting agent with an EGFR tyrosine kinase inhibitor may result in greater anti-tumor activity than either agent alone. These agents attack the tumor by different mechanisms.

Tumor blood vessels differ significantly from normal blood vessels. The endothelial cells which line their vessel walls retain the characteristics of immature, newly formed dividing cells and appear to depend heavily on a tubulin cytoskeleton to maintain their shape. Vascular targeting agents are designed to disrupt this cytoskeleton, causing the endothelial cells to change shape from flat to round, resulting in damage to the blood vessel lining. This causes vessel congestion and cessation of blood flow. The tumor is thus starved of oxygen and nutrients, while its waste products start to build up to toxic levels. As a result, much of the tumor dies.

The potential of ZD6126, a vascular targeting agent, and an EGFR tyrosine kinase inhibitor to work together in combination as a cancer treatment approach was evaluated in preclinical work being presented today at this meeting. Based on the results seen in these models, clinical investigation of this drug combination is about to begin.

Also presented at the meeting, University of Florida medical scientists reported the results of the combination of ZD6126 with another AstraZeneca novel anticancer agent in development known as ZD6474, an anti-angiogenesis agent. Anti-angiogenesis agents being developed by AstraZeneca are designed to block the vascular endothelial growth factor (VEGF) signaling pathway. This pathway is a critical step in angiogenesis, the process by which tumors stimulate the formation of new blood vessels. Based on results from preclinical studies, clinical investigations of the combination of vascular targeting agents and anti-angiogenesis agents are planned.

Other novel approaches:

AstraZeneca has a broad portfolio of novel cancer agents in early development for the potential treatment of a wide range of tumors. New pre-clinical data on several AstraZeneca novel agents have been presented at the AACR/NCI/EORTC meeting in Boston this week:
  • An oral prenylation inhibitor treatment that prevents the activation of a number of growth promoting proteins and thus prevents cancer cells from dividing (proliferating)
  • An orally active Src kinase inhibitor, which reduces the ability of cancer cells to invade normal tissues, preventing tumors from spreading
  • CDK (cyclin dependent kinase) and Aurora kinase inhibitors, which interfere with crucial steps in cell division and inhibit the proliferation of cancer cells

About AstraZeneca:

AstraZeneca is a major international healthcare business engaged in the research, development, manufacture and marketing of prescription pharmaceuticals and the supply of healthcare services. It is one of the top five pharmaceutical companies in the world with healthcare sales of over $17.8 billion and leading positions in sales of gastrointestinal, oncology, cardiovascular, neuroscience and respiratory products. In the United States, AstraZeneca is a $9.3 billion healthcare business with more than 12,000 employees. AstraZeneca is listed in the Dow Jones Sustainability Index (Global and European) as well as the FTSE4Good Index.

For more information about AstraZeneca, please visit www.astrazeneca-us.com

*AACR: American Association for Cancer Research; NCI: National Cancer Institute; EORTC: European Organization for Research and Treatment of Cancer.

Emily Denney | EurekAlert!
Further information:
http://www.astrazeneca.com/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>