Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence links inflammation to venous disease

19.11.2003


Research could lead to new diagnostic tests; safer treatments for blood clots in deep leg veins



For a medical disorder affecting more than 250,000 Americans each year, researchers don’t know much more today about what causes blood clots in veins than they did over 100 years ago. But deep vein thromboses or DVTs are a serious health problem, especially in the elderly. When blood clots form in deep leg veins, they can permanently damage the venous system or even be fatal, if a blood clot, or pulmonary embolism, travels to the lungs.

Until recently, DVT was thought to be solely a blood or vascular disorder. Now, scientists from the University of Michigan Medical School have discovered intriguing new evidence to support the idea that the development of blood clots in veins – just like blocked arteries in atherosclerosis – is an inflammatory process.


"When a blood clot develops in superficial veins of the leg – a condition called phlebitis – the redness and swelling associated with inflammation are visible," says Thomas W. Wakefield, M.D., a scientist and vascular surgeon in the U-M’s Cardiovascular Center. "When a clot forms deep inside the leg, these signs are hidden, so physicians have rarely associated DVTs with inflammation."

Working with Daniel D. Myers, DVM, MPH, an assistant professor of vascular surgery and animal medicine in the U-M Medical School, Wakefield is trying to figure out exactly what happens inside veins when a blood clot develops. In a study published in the November 2003 issue of The Journal of Vascular Surgery, he and Myers report that inflammatory molecules and immune system cells play a major role in the process.

The U-M scientists used four types of mice in the study. The first was a strain of genetically engineered mice developed by co-author Denisa D. Wagner, Ph.D, a professor of pathology at Harvard Medical School. A genetic mutation in these mice causes them to have abnormally high levels of a pro-inflammatory molecule called P-selectin circulating in their blood plasma. In previous studies, Wakefield has found that large amounts of P-selectin are expressed in the vein wall shortly after a blood clot starts to form.

A second group of mice lacked the gene required to produce P-selectin. A third group was unable to express either P-selectin or a related molecule called E-selectin. The fourth group consisted of normal controls. In all, 659 mice were involved in the research study.

Mice were surgically treated to induce thrombosis in the IVC – the major vein carrying blood from the lower body back to the heart. On the second and sixth day after surgery, U-M scientists measured the size and weight of blood clots in the IVC, examined the vein walls and took blood samples from mice in all four groups.

U-M scientists found that mice with the highest levels of P-selectin in their blood developed the largest venous blood clots and had more inflammatory cells in their vein walls. Blood from mice with high levels of P-selectin also contained microparticles – small fragments of cell membrane from degraded cells. Most of these microparticles came from immune system cells called leukocytes, but some were derived from blood platelets, which are responsible for clot initiation. Additionally, some may have come from endothelial cells lining vein walls.

"Our laboratory is the first to evaluate microparticle formation in a mouse model of DVT," Myers says. "We found that when P-selectin binds to its receptor, it seems to release these pro-coagulant microparticles, which accelerate the clot-forming process. Mice with more leukocyte-derived microparticles developed larger blood clots than mice with microparticles derived primarily from blood platelets."

Wakefield says the ultimate goal of his research is finding new ways to inhibit clot formation in his patients by using an anti-inflammatory approach, instead of relying on anticoagulants to treat DVT after it develops.

"All current blood-thinning medications can cause serious bleeding problems in patients, so there’s a need for new treatment options," he says. "The more we understand about the mechanism of DVT formation, the better our chances of finding safer ways to treat it. Just stopping inflammation alone will not inhibit thrombosis. You have to target the interaction between inflammation and thrombosis, which is why we think P-selectin or leukocyte-derived microparticles would make good therapeutic targets."

In addition to research designed to understand the complex relationship between inflammation and thrombosis, Wakefield also is conducting clinical studies to see whether microparticles or P-selectin could be used as a diagnostic marker for DVT formation in patients.

"Right now, the gold standard for diagnosis of DVT is ultrasound," Wakefield says. "We have other diagnostic tests, but none of them are accurate enough to use on their own. You have to combine them with a test such as ultrasound, which is expensive and labor-intensive. Better markers would allow us to detect the early stages of DVT development and intervene before problems develop."

The study was funded by the National Institutes of Health and Wyeth Research of Cambridge, Mass. In addition to Denisa Wagner, Ph.D., a professor of pathology and member of the Center for Blood Research at Harvard University, other research collaborators included Robert G. Schaub, Ph.D., assistant vice president of cardiovascular and metabolic diseases, Wyeth Research; Anjali Kumar, Ph.D., director of pharmacology, Critical Therapeutics in Cambridge, Mass.; U-M research associates Angela Hawley, Diana Farris, Shirley Wrobleski; and Porama Thanaporn, a U-M medical student.


Reference: The Journal of Vascular Surgery: 38 (5), pp.1075-1089 (November 2003)

Sally Pobojewski | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>