Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery shows promise as a new treatment for toxoplasmosis

18.11.2003


A multi-centre research team from the UK and the USA has discovered the first method to deliver medication directly into the encysted stage of the infectious parasites that cause toxoplasmosis and a novel target for medicines in the parasite. It has major implications for the way that we treat this devastating disease as it could lead to new medications and approaches to better tackle it. The study will be published online on November 17 by the Proceedings of the National Academy of Sciences (PNAS).



Toxoplasmosis is a parasitic infection from the ’apicomplexan’ family, which includes the causes of malaria and cryptosporidiosis. The disease is caused by a single celled organism called Toxoplasma gondii and is spread by cats and by eating undercooked meat. Toxoplasmosis is a common disease and can cause devastating problems for those with weakened immune systems, or when transmitted from mother to unborn child. It can lead to blindness, retardation and even death.

Professor David Rice, from the Department of Microbiology and Biotechnology at the University of Sheffield, was involved in the study. He explains, "Toxoplasma infections are especially difficult to treat because they recur. The disease operates in two stages, a proliferative stage and a latent stage. During the proliferative stage the infection can be treated, although there are many problems with available medicines, but the illness then progresses to a latent stage, where the cysts form that hold the parasites in a less active state. These cysts are untreatable as scientists can’t get medication inside the cyst. The cysts eventually rupture and release proliferating parasites, which can cause a recurrence of the illness if the immune system is weakened and in those with eye disease. Such recurrences can cause severe damage to the eye and nervous system."


The research team, led by Professor Rima McLeod, M.D. professor of ophthalmology and visual sciences at the University of Chicago, have a found a new method for delivering medicines that kill the parasites in the active stage and a new method for delivering medicines to kill them whilst they are in the active or latent stage.

The research began in 1996 when scientists at Stanford University discovered that short chains of arginine, a naturally occurring amino acid, could pass through human and mouse biological membranes, and could carry other molecules with them.

The new finding reported here means that for the first time scientists could have a way to deliver many medications through the host cell membranes and into cysts containing toxoplasma, directly to the parasite. Professor McLeod and her team set about looking more closely at the T. Gondii organism, to find a medication that would effectively kill the parasite without being toxic to humans.

Her team discovered an enzyme, enoyl reductase, that is not the same in animals and is vital to the survival of the parasite. The research team then identified a common antiseptic, triclosan, which had been found to affect enoyl reductase in bacteria and found it could kill the parasites responsible for toxoplasmosis and malaria but delivery was problematic. Triclosan is included in toothpaste, skin creams and mouthwash.

The triclosan was linked to the arginine chains in order to get the medication through several biological membranes to the parasites in cells and to the parasites within cysts. The cysts contain the parasites in their latent form. The team found that this method successfully inhibited the active parasite in mice and in tissue culture.

Professor McLeod says, "This discovery of the transporter is quite remarkable as no current antimicrobial compound can eliminate parasites in cysts. The discovery raises the possibility of better treatments for active infection and a new approach for treating latent infection in the eye by applying a lotion containing triclosan or other antimicrobials bound to a transporter which would carry them into the eye. If such treatment could eradicate the parasite in its latent form we could stop it from recurring. New targets such as enoyl reductase may provide a major step forward in identifying better treatments for active disease that causes much suffering as well as loss of life."

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>