Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery shows promise as a new treatment for toxoplasmosis

18.11.2003


A multi-centre research team from the UK and the USA has discovered the first method to deliver medication directly into the encysted stage of the infectious parasites that cause toxoplasmosis and a novel target for medicines in the parasite. It has major implications for the way that we treat this devastating disease as it could lead to new medications and approaches to better tackle it. The study will be published online on November 17 by the Proceedings of the National Academy of Sciences (PNAS).



Toxoplasmosis is a parasitic infection from the ’apicomplexan’ family, which includes the causes of malaria and cryptosporidiosis. The disease is caused by a single celled organism called Toxoplasma gondii and is spread by cats and by eating undercooked meat. Toxoplasmosis is a common disease and can cause devastating problems for those with weakened immune systems, or when transmitted from mother to unborn child. It can lead to blindness, retardation and even death.

Professor David Rice, from the Department of Microbiology and Biotechnology at the University of Sheffield, was involved in the study. He explains, "Toxoplasma infections are especially difficult to treat because they recur. The disease operates in two stages, a proliferative stage and a latent stage. During the proliferative stage the infection can be treated, although there are many problems with available medicines, but the illness then progresses to a latent stage, where the cysts form that hold the parasites in a less active state. These cysts are untreatable as scientists can’t get medication inside the cyst. The cysts eventually rupture and release proliferating parasites, which can cause a recurrence of the illness if the immune system is weakened and in those with eye disease. Such recurrences can cause severe damage to the eye and nervous system."


The research team, led by Professor Rima McLeod, M.D. professor of ophthalmology and visual sciences at the University of Chicago, have a found a new method for delivering medicines that kill the parasites in the active stage and a new method for delivering medicines to kill them whilst they are in the active or latent stage.

The research began in 1996 when scientists at Stanford University discovered that short chains of arginine, a naturally occurring amino acid, could pass through human and mouse biological membranes, and could carry other molecules with them.

The new finding reported here means that for the first time scientists could have a way to deliver many medications through the host cell membranes and into cysts containing toxoplasma, directly to the parasite. Professor McLeod and her team set about looking more closely at the T. Gondii organism, to find a medication that would effectively kill the parasite without being toxic to humans.

Her team discovered an enzyme, enoyl reductase, that is not the same in animals and is vital to the survival of the parasite. The research team then identified a common antiseptic, triclosan, which had been found to affect enoyl reductase in bacteria and found it could kill the parasites responsible for toxoplasmosis and malaria but delivery was problematic. Triclosan is included in toothpaste, skin creams and mouthwash.

The triclosan was linked to the arginine chains in order to get the medication through several biological membranes to the parasites in cells and to the parasites within cysts. The cysts contain the parasites in their latent form. The team found that this method successfully inhibited the active parasite in mice and in tissue culture.

Professor McLeod says, "This discovery of the transporter is quite remarkable as no current antimicrobial compound can eliminate parasites in cysts. The discovery raises the possibility of better treatments for active infection and a new approach for treating latent infection in the eye by applying a lotion containing triclosan or other antimicrobials bound to a transporter which would carry them into the eye. If such treatment could eradicate the parasite in its latent form we could stop it from recurring. New targets such as enoyl reductase may provide a major step forward in identifying better treatments for active disease that causes much suffering as well as loss of life."

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>