Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery shows promise as a new treatment for toxoplasmosis

18.11.2003


A multi-centre research team from the UK and the USA has discovered the first method to deliver medication directly into the encysted stage of the infectious parasites that cause toxoplasmosis and a novel target for medicines in the parasite. It has major implications for the way that we treat this devastating disease as it could lead to new medications and approaches to better tackle it. The study will be published online on November 17 by the Proceedings of the National Academy of Sciences (PNAS).



Toxoplasmosis is a parasitic infection from the ’apicomplexan’ family, which includes the causes of malaria and cryptosporidiosis. The disease is caused by a single celled organism called Toxoplasma gondii and is spread by cats and by eating undercooked meat. Toxoplasmosis is a common disease and can cause devastating problems for those with weakened immune systems, or when transmitted from mother to unborn child. It can lead to blindness, retardation and even death.

Professor David Rice, from the Department of Microbiology and Biotechnology at the University of Sheffield, was involved in the study. He explains, "Toxoplasma infections are especially difficult to treat because they recur. The disease operates in two stages, a proliferative stage and a latent stage. During the proliferative stage the infection can be treated, although there are many problems with available medicines, but the illness then progresses to a latent stage, where the cysts form that hold the parasites in a less active state. These cysts are untreatable as scientists can’t get medication inside the cyst. The cysts eventually rupture and release proliferating parasites, which can cause a recurrence of the illness if the immune system is weakened and in those with eye disease. Such recurrences can cause severe damage to the eye and nervous system."


The research team, led by Professor Rima McLeod, M.D. professor of ophthalmology and visual sciences at the University of Chicago, have a found a new method for delivering medicines that kill the parasites in the active stage and a new method for delivering medicines to kill them whilst they are in the active or latent stage.

The research began in 1996 when scientists at Stanford University discovered that short chains of arginine, a naturally occurring amino acid, could pass through human and mouse biological membranes, and could carry other molecules with them.

The new finding reported here means that for the first time scientists could have a way to deliver many medications through the host cell membranes and into cysts containing toxoplasma, directly to the parasite. Professor McLeod and her team set about looking more closely at the T. Gondii organism, to find a medication that would effectively kill the parasite without being toxic to humans.

Her team discovered an enzyme, enoyl reductase, that is not the same in animals and is vital to the survival of the parasite. The research team then identified a common antiseptic, triclosan, which had been found to affect enoyl reductase in bacteria and found it could kill the parasites responsible for toxoplasmosis and malaria but delivery was problematic. Triclosan is included in toothpaste, skin creams and mouthwash.

The triclosan was linked to the arginine chains in order to get the medication through several biological membranes to the parasites in cells and to the parasites within cysts. The cysts contain the parasites in their latent form. The team found that this method successfully inhibited the active parasite in mice and in tissue culture.

Professor McLeod says, "This discovery of the transporter is quite remarkable as no current antimicrobial compound can eliminate parasites in cysts. The discovery raises the possibility of better treatments for active infection and a new approach for treating latent infection in the eye by applying a lotion containing triclosan or other antimicrobials bound to a transporter which would carry them into the eye. If such treatment could eradicate the parasite in its latent form we could stop it from recurring. New targets such as enoyl reductase may provide a major step forward in identifying better treatments for active disease that causes much suffering as well as loss of life."

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>