Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas bubbles are taken under control

17.11.2003


The system developed by the Moscow scientists with the financial assistance of the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises will instantly allow to detect and measure gas micro-bubbles being formed in blood inside the pump oxygenator. A small device which looks like some kind of a bracelet on the arterial line of the pump oxygenator and is connected to the computer will be recording all bubbles, searching for potentially dangerous ones and will ensure the timely opportunity to get rid of them.



A patient on the operating table is exposed to numerous risks, especially if the operation is so complex, that extracorporeal circulation is required. One of the dangers is a risk of embolism by a gas bubble, which may occur in the process of blood circulation in the pump oxygenator. It is not always clear why the gas bubbles originate, but they do almost in all the cases. The smaller ones, less than 10 microns in diameter are not particularly dangerous, as they quite rapidly dissolve by themselves. As for bigger bubbles, they may plug in a vessel like a cork, thus disrupting normal blood circulation and causing very bad problems for the organism.

In order to avoid such consequences, it is necessary to trace all the bubbles formed in a pump oxygenator, detect the biggest ones as the most dangerous and get rid of them. The matter is that it has only been possible so far to apply a qualitative approach to this problem, but the scientists have not had any clue to solving it at the quantitative level - to detect gas bubbles in blood and to determine their number and size. In other words, the scientists were unable to distribute the bubbles by size.


However, this problem can soon be solved due to the effort of the scientists from the Moscow research-and-production company ‘BIOSS’. They developed a special system of detecting micro-bubbles on the arterial line of the pump oxygenator to perform extracorporeal circulation.

It consists of several parts. The core of the device is an electronic unit with the ultrasonic detector, which reminds a bracelet, but is very intelligent. Its action is based on the Doppler effect – the fact that the frequency of oscillation or the radiation wave length is changing when re-echoed from a moving object. Omitting technical details, the essence is that the generator creates a continuous ultrasonic wave, it is reflected from the bubbles and the detector, in its turn, catches the echoed signal.

Then an analog-to-digital converter ‘translates’ the assisted signal into the computer language, making the signal digital and then it is further transmitted to the data processing, storage and display unit. This way it is possible to display at any time a bar chart at the PC screen, showing how many gas bubbles are moving in blood flow inside the pump oxygenator and to evaluate their sizes.

So far, there has been built only one test copy of this remarkable device. The developers are currently testing it on a special calibration test bench. The device was especially developed and built for the purpose of creating gas bubbles of the predetermined size in the liquid imitating blood. First, it was necessary to calibrate the system, and the scientists did not have the standard. They had to develop it separately.

The system successfully underwent the first tests both at the test bench and at the real pump oxygenator. “Our system has demonstrated all the capabilities we expected to get”, said Tengiz Mosidze, the project manager and leading engineer. It quickly records gas bubbles ranging from 10 to 400 microns in diameter and accurately determines their sizes. We still need to perform medical tests. Currently, we are developing the algorithm of the computer program which will allow to analyze the situation and evaluate the probability of embolism. And for the future project we have plans to develop a system capable not only to detect dangerous bubbles in blood, but also to remove them automatically.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>