Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas bubbles are taken under control

17.11.2003


The system developed by the Moscow scientists with the financial assistance of the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises will instantly allow to detect and measure gas micro-bubbles being formed in blood inside the pump oxygenator. A small device which looks like some kind of a bracelet on the arterial line of the pump oxygenator and is connected to the computer will be recording all bubbles, searching for potentially dangerous ones and will ensure the timely opportunity to get rid of them.



A patient on the operating table is exposed to numerous risks, especially if the operation is so complex, that extracorporeal circulation is required. One of the dangers is a risk of embolism by a gas bubble, which may occur in the process of blood circulation in the pump oxygenator. It is not always clear why the gas bubbles originate, but they do almost in all the cases. The smaller ones, less than 10 microns in diameter are not particularly dangerous, as they quite rapidly dissolve by themselves. As for bigger bubbles, they may plug in a vessel like a cork, thus disrupting normal blood circulation and causing very bad problems for the organism.

In order to avoid such consequences, it is necessary to trace all the bubbles formed in a pump oxygenator, detect the biggest ones as the most dangerous and get rid of them. The matter is that it has only been possible so far to apply a qualitative approach to this problem, but the scientists have not had any clue to solving it at the quantitative level - to detect gas bubbles in blood and to determine their number and size. In other words, the scientists were unable to distribute the bubbles by size.


However, this problem can soon be solved due to the effort of the scientists from the Moscow research-and-production company ‘BIOSS’. They developed a special system of detecting micro-bubbles on the arterial line of the pump oxygenator to perform extracorporeal circulation.

It consists of several parts. The core of the device is an electronic unit with the ultrasonic detector, which reminds a bracelet, but is very intelligent. Its action is based on the Doppler effect – the fact that the frequency of oscillation or the radiation wave length is changing when re-echoed from a moving object. Omitting technical details, the essence is that the generator creates a continuous ultrasonic wave, it is reflected from the bubbles and the detector, in its turn, catches the echoed signal.

Then an analog-to-digital converter ‘translates’ the assisted signal into the computer language, making the signal digital and then it is further transmitted to the data processing, storage and display unit. This way it is possible to display at any time a bar chart at the PC screen, showing how many gas bubbles are moving in blood flow inside the pump oxygenator and to evaluate their sizes.

So far, there has been built only one test copy of this remarkable device. The developers are currently testing it on a special calibration test bench. The device was especially developed and built for the purpose of creating gas bubbles of the predetermined size in the liquid imitating blood. First, it was necessary to calibrate the system, and the scientists did not have the standard. They had to develop it separately.

The system successfully underwent the first tests both at the test bench and at the real pump oxygenator. “Our system has demonstrated all the capabilities we expected to get”, said Tengiz Mosidze, the project manager and leading engineer. It quickly records gas bubbles ranging from 10 to 400 microns in diameter and accurately determines their sizes. We still need to perform medical tests. Currently, we are developing the algorithm of the computer program which will allow to analyze the situation and evaluate the probability of embolism. And for the future project we have plans to develop a system capable not only to detect dangerous bubbles in blood, but also to remove them automatically.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>