Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas bubbles are taken under control

17.11.2003


The system developed by the Moscow scientists with the financial assistance of the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises will instantly allow to detect and measure gas micro-bubbles being formed in blood inside the pump oxygenator. A small device which looks like some kind of a bracelet on the arterial line of the pump oxygenator and is connected to the computer will be recording all bubbles, searching for potentially dangerous ones and will ensure the timely opportunity to get rid of them.



A patient on the operating table is exposed to numerous risks, especially if the operation is so complex, that extracorporeal circulation is required. One of the dangers is a risk of embolism by a gas bubble, which may occur in the process of blood circulation in the pump oxygenator. It is not always clear why the gas bubbles originate, but they do almost in all the cases. The smaller ones, less than 10 microns in diameter are not particularly dangerous, as they quite rapidly dissolve by themselves. As for bigger bubbles, they may plug in a vessel like a cork, thus disrupting normal blood circulation and causing very bad problems for the organism.

In order to avoid such consequences, it is necessary to trace all the bubbles formed in a pump oxygenator, detect the biggest ones as the most dangerous and get rid of them. The matter is that it has only been possible so far to apply a qualitative approach to this problem, but the scientists have not had any clue to solving it at the quantitative level - to detect gas bubbles in blood and to determine their number and size. In other words, the scientists were unable to distribute the bubbles by size.


However, this problem can soon be solved due to the effort of the scientists from the Moscow research-and-production company ‘BIOSS’. They developed a special system of detecting micro-bubbles on the arterial line of the pump oxygenator to perform extracorporeal circulation.

It consists of several parts. The core of the device is an electronic unit with the ultrasonic detector, which reminds a bracelet, but is very intelligent. Its action is based on the Doppler effect – the fact that the frequency of oscillation or the radiation wave length is changing when re-echoed from a moving object. Omitting technical details, the essence is that the generator creates a continuous ultrasonic wave, it is reflected from the bubbles and the detector, in its turn, catches the echoed signal.

Then an analog-to-digital converter ‘translates’ the assisted signal into the computer language, making the signal digital and then it is further transmitted to the data processing, storage and display unit. This way it is possible to display at any time a bar chart at the PC screen, showing how many gas bubbles are moving in blood flow inside the pump oxygenator and to evaluate their sizes.

So far, there has been built only one test copy of this remarkable device. The developers are currently testing it on a special calibration test bench. The device was especially developed and built for the purpose of creating gas bubbles of the predetermined size in the liquid imitating blood. First, it was necessary to calibrate the system, and the scientists did not have the standard. They had to develop it separately.

The system successfully underwent the first tests both at the test bench and at the real pump oxygenator. “Our system has demonstrated all the capabilities we expected to get”, said Tengiz Mosidze, the project manager and leading engineer. It quickly records gas bubbles ranging from 10 to 400 microns in diameter and accurately determines their sizes. We still need to perform medical tests. Currently, we are developing the algorithm of the computer program which will allow to analyze the situation and evaluate the probability of embolism. And for the future project we have plans to develop a system capable not only to detect dangerous bubbles in blood, but also to remove them automatically.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>