Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas bubbles are taken under control

17.11.2003


The system developed by the Moscow scientists with the financial assistance of the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises will instantly allow to detect and measure gas micro-bubbles being formed in blood inside the pump oxygenator. A small device which looks like some kind of a bracelet on the arterial line of the pump oxygenator and is connected to the computer will be recording all bubbles, searching for potentially dangerous ones and will ensure the timely opportunity to get rid of them.



A patient on the operating table is exposed to numerous risks, especially if the operation is so complex, that extracorporeal circulation is required. One of the dangers is a risk of embolism by a gas bubble, which may occur in the process of blood circulation in the pump oxygenator. It is not always clear why the gas bubbles originate, but they do almost in all the cases. The smaller ones, less than 10 microns in diameter are not particularly dangerous, as they quite rapidly dissolve by themselves. As for bigger bubbles, they may plug in a vessel like a cork, thus disrupting normal blood circulation and causing very bad problems for the organism.

In order to avoid such consequences, it is necessary to trace all the bubbles formed in a pump oxygenator, detect the biggest ones as the most dangerous and get rid of them. The matter is that it has only been possible so far to apply a qualitative approach to this problem, but the scientists have not had any clue to solving it at the quantitative level - to detect gas bubbles in blood and to determine their number and size. In other words, the scientists were unable to distribute the bubbles by size.


However, this problem can soon be solved due to the effort of the scientists from the Moscow research-and-production company ‘BIOSS’. They developed a special system of detecting micro-bubbles on the arterial line of the pump oxygenator to perform extracorporeal circulation.

It consists of several parts. The core of the device is an electronic unit with the ultrasonic detector, which reminds a bracelet, but is very intelligent. Its action is based on the Doppler effect – the fact that the frequency of oscillation or the radiation wave length is changing when re-echoed from a moving object. Omitting technical details, the essence is that the generator creates a continuous ultrasonic wave, it is reflected from the bubbles and the detector, in its turn, catches the echoed signal.

Then an analog-to-digital converter ‘translates’ the assisted signal into the computer language, making the signal digital and then it is further transmitted to the data processing, storage and display unit. This way it is possible to display at any time a bar chart at the PC screen, showing how many gas bubbles are moving in blood flow inside the pump oxygenator and to evaluate their sizes.

So far, there has been built only one test copy of this remarkable device. The developers are currently testing it on a special calibration test bench. The device was especially developed and built for the purpose of creating gas bubbles of the predetermined size in the liquid imitating blood. First, it was necessary to calibrate the system, and the scientists did not have the standard. They had to develop it separately.

The system successfully underwent the first tests both at the test bench and at the real pump oxygenator. “Our system has demonstrated all the capabilities we expected to get”, said Tengiz Mosidze, the project manager and leading engineer. It quickly records gas bubbles ranging from 10 to 400 microns in diameter and accurately determines their sizes. We still need to perform medical tests. Currently, we are developing the algorithm of the computer program which will allow to analyze the situation and evaluate the probability of embolism. And for the future project we have plans to develop a system capable not only to detect dangerous bubbles in blood, but also to remove them automatically.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>