Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small-molecule inhibitors of botulinum neurotoxin identified

14.11.2003


Findings hold promise for developing new botulism therapies



Scientists have identified several key molecules that block the activity of a toxin that causes botulism--an important first step in developing therapeutics to counter the disease.

Botulinum neurotoxins (BoNT) are useful as therapeutic agents for treating a wide variety of muscle dysfunctions in humans, and are used cosmetically to reduce wrinkles. Paradoxically, the seven serotypes of BoNT, designated A through G, also are among the most lethal biological substances known.


Botulinum neurotoxins are composed of two peptide chains, a heavy chain (HC) and a light chain (LC). The heavy chain targets and binds to surface receptors on nerve terminals. The toxins are then internalized into the nerve terminal. Once inside, the light chain separates from the heavy chain and cleaves, or cuts, specific proteins that control neuromuscular function. Cleavage of these proteins effectively blocks the release of neurotransmitters that cause the muscle contractions necessary for respiration. The result is a flaccid paralysis that ultimately leads to suffocation and death.

Because botulinum neurotoxins are capable of causing mass casualties, they are classified as biodefense A (top priority) agents by the Centers for Disease Control and Prevention. Currently, no therapeutics exist to counter the threat; thus, identifying and developing compounds that inhibit the neurotoxins is a high priority.

In an article published last month in Biochemical and Biophysical Research Communications, and recently highlighted in Nature Reviews in Drug Discovery, investigators from the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), the National Cancer Institute (NCI), and the University of Nebraska Medical Center (UNMC) report using a high-throughput assay to screen a group of 1,990 compounds known as the NCI diversity set. The molecular properties of this group are predictive of a larger set of more than 100,000 compounds.

Using a two-stage assay, the team identified a number of compounds that inhibited the enzymatic action of BoNT serotype A light chain (BoNT/A LC). All inhibitors were further verified by high-performance liquid chromatography. Finally, molecular modeling techniques were used to predict structural features that contribute to inhibitor binding and potency.

These techniques revealed a common pharmacophore--a "scaffold" upon which future therapeutics can be built. This pharmacophore will serve as a basis for directing future efforts to develop BoNT/A LC inhibitors with enhanced potency. Testing in cell culture will be followed by animal modeling once the most promising candidates have been identified.

Study collaborators were Sina Bavari, James J. Schmidt, and Robert G. Stafford of USAMRIID; Rick Gussio, Daniel W. Zaharevitz, Edward A. Sausville, Douglas J. Lane, Connor F. McGrath, Ann R. Hermone, Tam L. Nguyen, Rekha G. Panchal, and James C. Burnett of NCI; and Jonathan L. Vennerstrom of UNMC.

"This work is the result of a productive collaboration between federal and academic partners," said Colonel Erik A. Henchal, commander of USAMRIID. "These are the relationships that will, in the future, deliver the biodefense products the nation needs."


USAMRIID, located at Fort Detrick, Maryland, is the lead laboratory for the Medical Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute’s mission is to conduct basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>