Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small-molecule inhibitors of botulinum neurotoxin identified

14.11.2003


Findings hold promise for developing new botulism therapies



Scientists have identified several key molecules that block the activity of a toxin that causes botulism--an important first step in developing therapeutics to counter the disease.

Botulinum neurotoxins (BoNT) are useful as therapeutic agents for treating a wide variety of muscle dysfunctions in humans, and are used cosmetically to reduce wrinkles. Paradoxically, the seven serotypes of BoNT, designated A through G, also are among the most lethal biological substances known.


Botulinum neurotoxins are composed of two peptide chains, a heavy chain (HC) and a light chain (LC). The heavy chain targets and binds to surface receptors on nerve terminals. The toxins are then internalized into the nerve terminal. Once inside, the light chain separates from the heavy chain and cleaves, or cuts, specific proteins that control neuromuscular function. Cleavage of these proteins effectively blocks the release of neurotransmitters that cause the muscle contractions necessary for respiration. The result is a flaccid paralysis that ultimately leads to suffocation and death.

Because botulinum neurotoxins are capable of causing mass casualties, they are classified as biodefense A (top priority) agents by the Centers for Disease Control and Prevention. Currently, no therapeutics exist to counter the threat; thus, identifying and developing compounds that inhibit the neurotoxins is a high priority.

In an article published last month in Biochemical and Biophysical Research Communications, and recently highlighted in Nature Reviews in Drug Discovery, investigators from the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), the National Cancer Institute (NCI), and the University of Nebraska Medical Center (UNMC) report using a high-throughput assay to screen a group of 1,990 compounds known as the NCI diversity set. The molecular properties of this group are predictive of a larger set of more than 100,000 compounds.

Using a two-stage assay, the team identified a number of compounds that inhibited the enzymatic action of BoNT serotype A light chain (BoNT/A LC). All inhibitors were further verified by high-performance liquid chromatography. Finally, molecular modeling techniques were used to predict structural features that contribute to inhibitor binding and potency.

These techniques revealed a common pharmacophore--a "scaffold" upon which future therapeutics can be built. This pharmacophore will serve as a basis for directing future efforts to develop BoNT/A LC inhibitors with enhanced potency. Testing in cell culture will be followed by animal modeling once the most promising candidates have been identified.

Study collaborators were Sina Bavari, James J. Schmidt, and Robert G. Stafford of USAMRIID; Rick Gussio, Daniel W. Zaharevitz, Edward A. Sausville, Douglas J. Lane, Connor F. McGrath, Ann R. Hermone, Tam L. Nguyen, Rekha G. Panchal, and James C. Burnett of NCI; and Jonathan L. Vennerstrom of UNMC.

"This work is the result of a productive collaboration between federal and academic partners," said Colonel Erik A. Henchal, commander of USAMRIID. "These are the relationships that will, in the future, deliver the biodefense products the nation needs."


USAMRIID, located at Fort Detrick, Maryland, is the lead laboratory for the Medical Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute’s mission is to conduct basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>