Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small-molecule inhibitors of botulinum neurotoxin identified

14.11.2003


Findings hold promise for developing new botulism therapies



Scientists have identified several key molecules that block the activity of a toxin that causes botulism--an important first step in developing therapeutics to counter the disease.

Botulinum neurotoxins (BoNT) are useful as therapeutic agents for treating a wide variety of muscle dysfunctions in humans, and are used cosmetically to reduce wrinkles. Paradoxically, the seven serotypes of BoNT, designated A through G, also are among the most lethal biological substances known.


Botulinum neurotoxins are composed of two peptide chains, a heavy chain (HC) and a light chain (LC). The heavy chain targets and binds to surface receptors on nerve terminals. The toxins are then internalized into the nerve terminal. Once inside, the light chain separates from the heavy chain and cleaves, or cuts, specific proteins that control neuromuscular function. Cleavage of these proteins effectively blocks the release of neurotransmitters that cause the muscle contractions necessary for respiration. The result is a flaccid paralysis that ultimately leads to suffocation and death.

Because botulinum neurotoxins are capable of causing mass casualties, they are classified as biodefense A (top priority) agents by the Centers for Disease Control and Prevention. Currently, no therapeutics exist to counter the threat; thus, identifying and developing compounds that inhibit the neurotoxins is a high priority.

In an article published last month in Biochemical and Biophysical Research Communications, and recently highlighted in Nature Reviews in Drug Discovery, investigators from the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), the National Cancer Institute (NCI), and the University of Nebraska Medical Center (UNMC) report using a high-throughput assay to screen a group of 1,990 compounds known as the NCI diversity set. The molecular properties of this group are predictive of a larger set of more than 100,000 compounds.

Using a two-stage assay, the team identified a number of compounds that inhibited the enzymatic action of BoNT serotype A light chain (BoNT/A LC). All inhibitors were further verified by high-performance liquid chromatography. Finally, molecular modeling techniques were used to predict structural features that contribute to inhibitor binding and potency.

These techniques revealed a common pharmacophore--a "scaffold" upon which future therapeutics can be built. This pharmacophore will serve as a basis for directing future efforts to develop BoNT/A LC inhibitors with enhanced potency. Testing in cell culture will be followed by animal modeling once the most promising candidates have been identified.

Study collaborators were Sina Bavari, James J. Schmidt, and Robert G. Stafford of USAMRIID; Rick Gussio, Daniel W. Zaharevitz, Edward A. Sausville, Douglas J. Lane, Connor F. McGrath, Ann R. Hermone, Tam L. Nguyen, Rekha G. Panchal, and James C. Burnett of NCI; and Jonathan L. Vennerstrom of UNMC.

"This work is the result of a productive collaboration between federal and academic partners," said Colonel Erik A. Henchal, commander of USAMRIID. "These are the relationships that will, in the future, deliver the biodefense products the nation needs."


USAMRIID, located at Fort Detrick, Maryland, is the lead laboratory for the Medical Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute’s mission is to conduct basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil/

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>