Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists use gene therapy to restore function of damaged heart cells in laboratory

14.11.2003


Researchers at Jefferson Medical College and Duke University have used gene therapy to help damaged heart cells regain strength and beat normally again in the laboratory. The work takes the scientists one step closer to eventual clinical trials in humans.



Walter Koch, Ph.D., director of the Center for Translational Medicine of the Department of Medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and his colleagues at Duke used a virus to carry a gene into the heart cells of individuals who had suffered heart failure. The gene blocks the activity of an enzyme that is increased in such heart cells, in turn, enabling the cells to beat at normal strength. Dr. Koch and his co-workers at Duke University Medical Center in Durham, N.C., presented their findings this week at the American Heart Association’s Scientific Sessions 2003 in Orlando.

According to Dr. Koch, who is W.W. Smith Professor of Cardiology at Jefferson Medical College of Thomas Jefferson University, researchers have known for some time that the beta-adrenergic receptor system fails to work properly in individuals with end-stage heart failure. Such receptors "drive the heart – both by rate and force of contraction," he says.


The researchers’ target has been the beta-adrenergic kinase (ßARK1), an enzyme that is elevated in human heart failure. One of its functions is to turn off beta-adrenergic receptors. "In heart failure, beta adrenergic receptor density is decreased, ßARK is increased and both together cause dysfunctional beta receptor signaling," Dr. Koch says. "A failing heart then has little capacity to respond to exercise or stress because there are fewer receptors and the remaining receptors are more or less turned off.

"We have thought that inhibiting ßARK could increase signaling and increase function," he explains.

In the laboratory dish, the researchers infected heart cells from patients who underwent cardiac transplantation due to end-stage heart failure with an adenovirus that encoded both ßARKct – a peptide that can block ßARK – and a so-called "reporter gene" protein, which glows green. The latter provided a signal to the scientists that the inhibitor was indeed present in the heart cells. They then were able to use a video camera to actually measure how strong the individual heart cells were beating.

"We put the ßARKct into the cells, and failing human hearts become more like normal hearts, based on their ability to contract," Dr. Koch says. "This is the first work in actual human cells to show efficacy of ßARKct and the enzyme ßARK1 as targets for heart failure.

"This study is the last proof of concept," he adds, noting that years of previous work in various animal models enabled the research team to reach this point. "Now we are dealing with human cells from failing human hearts."

Further animal studies are planned, which, he notes, should lead to eventual human clinical trials.


Contact:
Steve Benowitz or Phyllis Fisher
215-955-6300
After Hours: 215-955-6060
E-Mail: steven.benowitz@mail.tju.edu

Steve Benowitz | EurekAlert!
Further information:
http://www.tju.edu/

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>