Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists use gene therapy to restore function of damaged heart cells in laboratory

14.11.2003


Researchers at Jefferson Medical College and Duke University have used gene therapy to help damaged heart cells regain strength and beat normally again in the laboratory. The work takes the scientists one step closer to eventual clinical trials in humans.



Walter Koch, Ph.D., director of the Center for Translational Medicine of the Department of Medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and his colleagues at Duke used a virus to carry a gene into the heart cells of individuals who had suffered heart failure. The gene blocks the activity of an enzyme that is increased in such heart cells, in turn, enabling the cells to beat at normal strength. Dr. Koch and his co-workers at Duke University Medical Center in Durham, N.C., presented their findings this week at the American Heart Association’s Scientific Sessions 2003 in Orlando.

According to Dr. Koch, who is W.W. Smith Professor of Cardiology at Jefferson Medical College of Thomas Jefferson University, researchers have known for some time that the beta-adrenergic receptor system fails to work properly in individuals with end-stage heart failure. Such receptors "drive the heart – both by rate and force of contraction," he says.


The researchers’ target has been the beta-adrenergic kinase (ßARK1), an enzyme that is elevated in human heart failure. One of its functions is to turn off beta-adrenergic receptors. "In heart failure, beta adrenergic receptor density is decreased, ßARK is increased and both together cause dysfunctional beta receptor signaling," Dr. Koch says. "A failing heart then has little capacity to respond to exercise or stress because there are fewer receptors and the remaining receptors are more or less turned off.

"We have thought that inhibiting ßARK could increase signaling and increase function," he explains.

In the laboratory dish, the researchers infected heart cells from patients who underwent cardiac transplantation due to end-stage heart failure with an adenovirus that encoded both ßARKct – a peptide that can block ßARK – and a so-called "reporter gene" protein, which glows green. The latter provided a signal to the scientists that the inhibitor was indeed present in the heart cells. They then were able to use a video camera to actually measure how strong the individual heart cells were beating.

"We put the ßARKct into the cells, and failing human hearts become more like normal hearts, based on their ability to contract," Dr. Koch says. "This is the first work in actual human cells to show efficacy of ßARKct and the enzyme ßARK1 as targets for heart failure.

"This study is the last proof of concept," he adds, noting that years of previous work in various animal models enabled the research team to reach this point. "Now we are dealing with human cells from failing human hearts."

Further animal studies are planned, which, he notes, should lead to eventual human clinical trials.


Contact:
Steve Benowitz or Phyllis Fisher
215-955-6300
After Hours: 215-955-6060
E-Mail: steven.benowitz@mail.tju.edu

Steve Benowitz | EurekAlert!
Further information:
http://www.tju.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

Researcher creates a controlled rogue wave in realistic oceanic conditions

30.09.2016 | Earth Sciences

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

Spiral arms: not just in galaxies

30.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>