Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing Alzheimer’s disease

13.11.2003


Imaging damaged brain cells in living mice provides Alzheimer’s clues



Using recently developed techniques for imaging individual cells in living animals, a team led by researchers at Washington University School of Medicine in St. Louis has watched as Alzheimer’s-like brain plaques damage mouse brain cells.

The results will be presented at 9 a.m. CT on Wednesday, Nov. 12, at the 33rd Annual Meeting of the Society for Neuroscience in New Orleans.


"This work is very exciting," says principal investigator David M. Holtzman, M.D. "We’ve been able to visualize damaged nerve connections in living animals and follow them over time in the same animal. Our next step is to determine whether such damage is reversible."

Holtzman is the Andrew B. and Gretchen P. Jones Professor of Neurology and head of the Department of Neurology, the Charlotte and Paul Hagemann Professor of Neurology and a professor of molecular biology and pharmacology. The first author is Robert P. Brendza, Ph.D., research instructor in neurology.

The study was conducted in collaboration with Brian Bacskai, Ph.D., investigator at Massachusetts General Institute for Neurodegenerative Disorders and an assistant professor of neurology at Harvard Medical School; and Bradley Hyman, M.D., Ph.D., director of the Alzheimer’s Unit at the Massachusetts General Institute for Neurodegenerative Disorders; and John B. Penney Jr. Professor of Neurology at Harvard Medical School; William E. Klunk, M.D., Ph.D., director of psychiatry of the Alzheimer’s Disease Research Center at the University of Pittsburgh; and Kelly Bales, senior biologist, and Steven Paul, M.D., executive vice president for science and technology at Eli Lilly and Co.

In the 1990s, biologists discovered the protein that makes certain jellyfish luminescent also could be used to generate fluorescent cells in other species. By shining light on a living mouse engineered to contain these proteins, researchers can watch cellular activity over time using a multiphoton microscope, a sophisticated new microscope technique.

Holtzman’s team used this technique to examine the brains of mice that develop plaques similar to those characteristic of Alzheimer’s disease. The mice also were engineered to have a subset of brain cells, or neurons, that express yellow fluorescent protein. Using this model, they observed neurons becoming increasingly disrupted by brain plaques over time.

"We plan to use this system to further examine the process of nerve cell damage and degeneration," Holtzman says. "This line of research should provide new insight into the underlying processes involved in the development of Alzheimer’s disease and help us determine whether the proteins that accumulate as brain plaques are a useful and feasible target for Alzheimer’s therapies."


Brendza RP, Bacskai BJ, Simmons KA, Skoch JM, Klunk WE, Mathis CA, Bales KR, Paul SM, Hyman BT, Holtzman DH. Imaging dystrophy in vivo in fluorescent PDAPP transgenic mice. Society for Neuroscience 33rd Annual Meeting. Nov. 12, 2003.

Funding from the National Institutes of Health, the Alzheimer’s Association and Eli Lilly and Company supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>