Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing Alzheimer’s disease

13.11.2003


Imaging damaged brain cells in living mice provides Alzheimer’s clues



Using recently developed techniques for imaging individual cells in living animals, a team led by researchers at Washington University School of Medicine in St. Louis has watched as Alzheimer’s-like brain plaques damage mouse brain cells.

The results will be presented at 9 a.m. CT on Wednesday, Nov. 12, at the 33rd Annual Meeting of the Society for Neuroscience in New Orleans.


"This work is very exciting," says principal investigator David M. Holtzman, M.D. "We’ve been able to visualize damaged nerve connections in living animals and follow them over time in the same animal. Our next step is to determine whether such damage is reversible."

Holtzman is the Andrew B. and Gretchen P. Jones Professor of Neurology and head of the Department of Neurology, the Charlotte and Paul Hagemann Professor of Neurology and a professor of molecular biology and pharmacology. The first author is Robert P. Brendza, Ph.D., research instructor in neurology.

The study was conducted in collaboration with Brian Bacskai, Ph.D., investigator at Massachusetts General Institute for Neurodegenerative Disorders and an assistant professor of neurology at Harvard Medical School; and Bradley Hyman, M.D., Ph.D., director of the Alzheimer’s Unit at the Massachusetts General Institute for Neurodegenerative Disorders; and John B. Penney Jr. Professor of Neurology at Harvard Medical School; William E. Klunk, M.D., Ph.D., director of psychiatry of the Alzheimer’s Disease Research Center at the University of Pittsburgh; and Kelly Bales, senior biologist, and Steven Paul, M.D., executive vice president for science and technology at Eli Lilly and Co.

In the 1990s, biologists discovered the protein that makes certain jellyfish luminescent also could be used to generate fluorescent cells in other species. By shining light on a living mouse engineered to contain these proteins, researchers can watch cellular activity over time using a multiphoton microscope, a sophisticated new microscope technique.

Holtzman’s team used this technique to examine the brains of mice that develop plaques similar to those characteristic of Alzheimer’s disease. The mice also were engineered to have a subset of brain cells, or neurons, that express yellow fluorescent protein. Using this model, they observed neurons becoming increasingly disrupted by brain plaques over time.

"We plan to use this system to further examine the process of nerve cell damage and degeneration," Holtzman says. "This line of research should provide new insight into the underlying processes involved in the development of Alzheimer’s disease and help us determine whether the proteins that accumulate as brain plaques are a useful and feasible target for Alzheimer’s therapies."


Brendza RP, Bacskai BJ, Simmons KA, Skoch JM, Klunk WE, Mathis CA, Bales KR, Paul SM, Hyman BT, Holtzman DH. Imaging dystrophy in vivo in fluorescent PDAPP transgenic mice. Society for Neuroscience 33rd Annual Meeting. Nov. 12, 2003.

Funding from the National Institutes of Health, the Alzheimer’s Association and Eli Lilly and Company supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>