Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing Alzheimer’s disease

13.11.2003


Imaging damaged brain cells in living mice provides Alzheimer’s clues



Using recently developed techniques for imaging individual cells in living animals, a team led by researchers at Washington University School of Medicine in St. Louis has watched as Alzheimer’s-like brain plaques damage mouse brain cells.

The results will be presented at 9 a.m. CT on Wednesday, Nov. 12, at the 33rd Annual Meeting of the Society for Neuroscience in New Orleans.


"This work is very exciting," says principal investigator David M. Holtzman, M.D. "We’ve been able to visualize damaged nerve connections in living animals and follow them over time in the same animal. Our next step is to determine whether such damage is reversible."

Holtzman is the Andrew B. and Gretchen P. Jones Professor of Neurology and head of the Department of Neurology, the Charlotte and Paul Hagemann Professor of Neurology and a professor of molecular biology and pharmacology. The first author is Robert P. Brendza, Ph.D., research instructor in neurology.

The study was conducted in collaboration with Brian Bacskai, Ph.D., investigator at Massachusetts General Institute for Neurodegenerative Disorders and an assistant professor of neurology at Harvard Medical School; and Bradley Hyman, M.D., Ph.D., director of the Alzheimer’s Unit at the Massachusetts General Institute for Neurodegenerative Disorders; and John B. Penney Jr. Professor of Neurology at Harvard Medical School; William E. Klunk, M.D., Ph.D., director of psychiatry of the Alzheimer’s Disease Research Center at the University of Pittsburgh; and Kelly Bales, senior biologist, and Steven Paul, M.D., executive vice president for science and technology at Eli Lilly and Co.

In the 1990s, biologists discovered the protein that makes certain jellyfish luminescent also could be used to generate fluorescent cells in other species. By shining light on a living mouse engineered to contain these proteins, researchers can watch cellular activity over time using a multiphoton microscope, a sophisticated new microscope technique.

Holtzman’s team used this technique to examine the brains of mice that develop plaques similar to those characteristic of Alzheimer’s disease. The mice also were engineered to have a subset of brain cells, or neurons, that express yellow fluorescent protein. Using this model, they observed neurons becoming increasingly disrupted by brain plaques over time.

"We plan to use this system to further examine the process of nerve cell damage and degeneration," Holtzman says. "This line of research should provide new insight into the underlying processes involved in the development of Alzheimer’s disease and help us determine whether the proteins that accumulate as brain plaques are a useful and feasible target for Alzheimer’s therapies."


Brendza RP, Bacskai BJ, Simmons KA, Skoch JM, Klunk WE, Mathis CA, Bales KR, Paul SM, Hyman BT, Holtzman DH. Imaging dystrophy in vivo in fluorescent PDAPP transgenic mice. Society for Neuroscience 33rd Annual Meeting. Nov. 12, 2003.

Funding from the National Institutes of Health, the Alzheimer’s Association and Eli Lilly and Company supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>