Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find genetic clue to cancer relapse

13.11.2003


Cancer researchers at Perth’s Telethon Institute for Child Health Research (TICHR) have developed a new test that can rapidly detect the loss of genes in cancer cells, paving the way for more targeted and effective treatments for patients.



Australian Cancer Technology (AustCancer, ASX:ACU) today announced that it has entered into a partnership agreement with the Institute to commercialise this novel technology and bring it to the market as quickly as possible.

Professor Ursula Kees, who heads the Children’s Leukaemia and Cancer Research Division at TICHR, said the development of a fast, simple gene test could significantly improve patient outcomes.


"Our research in a group of cancer patients has shown that those patients with cancer cells that have lost a specific tumour suppressor gene are at greater risk of relapse," she said.

"If their doctors can determine the genetic makeup of the cancer at an early stage, then they will have a very important indicator of the type of treatment that will be most effective."

"Current methods for testing the loss of genes in cancer cells are expensive and relatively slow. The new technology that we have developed is fast, simple and can be applied at low cost - in fact it uses standard equipment found in most diagnostic labs."

Professor Kees said in studies on children with acute lymphoblastic leukaemia (ALL), which were published in the prestigious journal ’Blood’, her team had shown that this technology is effective in measuring the deletion of an important tumour suppressor gene. The studies also showed that the gene’s absence pointed to a 11-fold higher risk of relapse.

"Testing cancer cells to determine whether a gene is missing has always been considered very difficult because patient specimens always contain normal cells, and the genetic differences that we’re looking for are very subtle. This new technology can detect those very small differences."

Paul Hopper, managing director of AustCancer said his company would be determining the most appropriate commercial model by which the test can be rapidly brought to the market.

"We believe that, as medical science’s understanding of the role of genes in cancer grows, an inexpensive, quick and routine gene test will become essential in the diagnosis of many types of cancer. The technology is patented and we have embarked on a research program with the Institute to expand its utility to other important cancer genes."

Director of the Telethon Institute for Child Health Research, Professor Fiona Stanley, said the Institute was delighted to partner with AustCancer on this discovery because of their strong credentials in the field.

"It’s important that we make sure that the benefits of our research are seen by the patients as soon as possible. This partnership will ensure that we can now take this discovery to the next stage of development."

PLEASE DIRECT ENQUIRIES TO:

Liz Chester
Media Liaison Manager
Telethon Institute for Child Health Research
Phone: +61 409 988 530

Paul Hopper
Managing Director
Australian Cancer Technology
Phone: +61 407 118 366 or +61 2 9252 6899

Mike Feehan
Monsoon Communications
Phone: +61 3 9620 3333

| Monsoon Communications
Further information:
http://www.ichr.uwa.edu.au
http://www.austcancer.com.au

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>