Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pathway discovered at Stanford provides insight into heart disease

13.11.2003


A new signaling pathway appears to play a critical role in the development of heart disease, according to researchers at Stanford University School of Medicine. Now that this marker of cardiac dysfunction, known as the APJ-apelin pathway, has been identified, it could lead to better diagnosis of heart problems, perhaps even allowing doctors to intervene in heart disease by blocking or boosting levels of critical proteins.

"The thing that’s clear is that apelin is increased in heart failure," said Euan Ashley, MD, PhD, a clinical fellow in cardiovascular medicine and one of the lead authors of the study, which is being presented at a Nov. 12 poster session at the annual American Heart Association meeting in Orlando.

"The idea of a blood test to help make a diagnosis of heart disease is very appealing," Ashley said. "But my bigger hope is for therapeutic potential, and given what we know about apelin levels changing a lot during heart failure, either blocking or enhancing this system may provide a treatment for heart failure."



The apelin-APJ signaling pathway’s role in cardiac health was discovered through straightforward techniques combined in such a way that made a previously unnoticed connection apparent. Researchers united Stanford’s long experience with cardiac-assist devices with the ability of microarrays to scan for the activity of thousands of genes at once. In the study, researchers looked at two different heart tissue samples from each patient. One sample came from patients suffering end-stage heart disease before any type of surgical intervention, and the second sample was taken after the same patients’ hearts had recovered with the help of artificial pumps known as left-ventricular assist devices, or LVADs.

The patients in this study relied upon LVADs for up to a year to pump their blood as they waited for an appropriate donor heart to become available for transplant. When the device was implanted, a small section of heart tissue had to be removed, which provided the "before" sample for the study. Once a donor heart arrived, the patient’s old heart became the "after" sample.

"By comparing the two states, the genes we are seeing show the differences between the patients at their worst and when their hearts have had a chance to recover for a bit," said Mary Chen, life science research assistant in cardiovascular medicine and the other lead author of the study. In other words, the things that get worse during heart failure improve with the aid of an LVAD.

Genes that change during the recovery process could provide valuable insight into the progression of heart disease because heart tissue after LVAD use approximates the patient’s healthy heart. The researchers screened matched samples from 11 male patients before and after their heart transplants using microarrays to test for the activity of more than 12,000 genes. Among the genes that changed greatly between the two states was one called BNP, already known to be the first marker of heart disease to date. While this provided some confirmation of their technique, far more intriguing was the discovery of a new pathway.

"Right at the top of our list was a gene that nobody had paid any attention to," said Ashley. "That was our first light bulb." He explained that the gene they found to be most active in the recovering heart was related to angiotensin - shown 20 years ago to be important in heart failure, leading to the class of drugs known as ACE inhibitors. The gene they found produces a receptor called APJ. The protein that combines with this receptor is apelin, which had been shown recently to be perhaps the most potent stimulator of heart contractions ever discovered. Nobody had connected apelin and APJ to cardiac failure until now, the researchers said.

To provide further evidence that apelin played a role in heart disease, the Stanford team detected the protein in human blood. Once they determined what a normal range was, they looked at patients with various stages of heart disease and found that the level of apelin in a person’s blood reflected the condition of their heart determined by standard methods. They further showed that apelin is located in the lining of the blood vessels, but it signals to the receptor APJ in the heart.



Other Stanford researchers who contributed to this presentation are Alicia Deng, life science research assistant in cardiovascular medicine; Philip Tsao, PhD, assistant professor of research in cardiovascular medicine; and Thomas Quertermous, MD, the William G. Irwin Professor in Cardiovascular Medicine. This work was supported by the Donald W. Reynolds Cardiovascular Clinical Research Center at Stanford.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>