Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pathway discovered at Stanford provides insight into heart disease

13.11.2003


A new signaling pathway appears to play a critical role in the development of heart disease, according to researchers at Stanford University School of Medicine. Now that this marker of cardiac dysfunction, known as the APJ-apelin pathway, has been identified, it could lead to better diagnosis of heart problems, perhaps even allowing doctors to intervene in heart disease by blocking or boosting levels of critical proteins.

"The thing that’s clear is that apelin is increased in heart failure," said Euan Ashley, MD, PhD, a clinical fellow in cardiovascular medicine and one of the lead authors of the study, which is being presented at a Nov. 12 poster session at the annual American Heart Association meeting in Orlando.

"The idea of a blood test to help make a diagnosis of heart disease is very appealing," Ashley said. "But my bigger hope is for therapeutic potential, and given what we know about apelin levels changing a lot during heart failure, either blocking or enhancing this system may provide a treatment for heart failure."



The apelin-APJ signaling pathway’s role in cardiac health was discovered through straightforward techniques combined in such a way that made a previously unnoticed connection apparent. Researchers united Stanford’s long experience with cardiac-assist devices with the ability of microarrays to scan for the activity of thousands of genes at once. In the study, researchers looked at two different heart tissue samples from each patient. One sample came from patients suffering end-stage heart disease before any type of surgical intervention, and the second sample was taken after the same patients’ hearts had recovered with the help of artificial pumps known as left-ventricular assist devices, or LVADs.

The patients in this study relied upon LVADs for up to a year to pump their blood as they waited for an appropriate donor heart to become available for transplant. When the device was implanted, a small section of heart tissue had to be removed, which provided the "before" sample for the study. Once a donor heart arrived, the patient’s old heart became the "after" sample.

"By comparing the two states, the genes we are seeing show the differences between the patients at their worst and when their hearts have had a chance to recover for a bit," said Mary Chen, life science research assistant in cardiovascular medicine and the other lead author of the study. In other words, the things that get worse during heart failure improve with the aid of an LVAD.

Genes that change during the recovery process could provide valuable insight into the progression of heart disease because heart tissue after LVAD use approximates the patient’s healthy heart. The researchers screened matched samples from 11 male patients before and after their heart transplants using microarrays to test for the activity of more than 12,000 genes. Among the genes that changed greatly between the two states was one called BNP, already known to be the first marker of heart disease to date. While this provided some confirmation of their technique, far more intriguing was the discovery of a new pathway.

"Right at the top of our list was a gene that nobody had paid any attention to," said Ashley. "That was our first light bulb." He explained that the gene they found to be most active in the recovering heart was related to angiotensin - shown 20 years ago to be important in heart failure, leading to the class of drugs known as ACE inhibitors. The gene they found produces a receptor called APJ. The protein that combines with this receptor is apelin, which had been shown recently to be perhaps the most potent stimulator of heart contractions ever discovered. Nobody had connected apelin and APJ to cardiac failure until now, the researchers said.

To provide further evidence that apelin played a role in heart disease, the Stanford team detected the protein in human blood. Once they determined what a normal range was, they looked at patients with various stages of heart disease and found that the level of apelin in a person’s blood reflected the condition of their heart determined by standard methods. They further showed that apelin is located in the lining of the blood vessels, but it signals to the receptor APJ in the heart.



Other Stanford researchers who contributed to this presentation are Alicia Deng, life science research assistant in cardiovascular medicine; Philip Tsao, PhD, assistant professor of research in cardiovascular medicine; and Thomas Quertermous, MD, the William G. Irwin Professor in Cardiovascular Medicine. This work was supported by the Donald W. Reynolds Cardiovascular Clinical Research Center at Stanford.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>