Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pathway discovered at Stanford provides insight into heart disease

13.11.2003


A new signaling pathway appears to play a critical role in the development of heart disease, according to researchers at Stanford University School of Medicine. Now that this marker of cardiac dysfunction, known as the APJ-apelin pathway, has been identified, it could lead to better diagnosis of heart problems, perhaps even allowing doctors to intervene in heart disease by blocking or boosting levels of critical proteins.

"The thing that’s clear is that apelin is increased in heart failure," said Euan Ashley, MD, PhD, a clinical fellow in cardiovascular medicine and one of the lead authors of the study, which is being presented at a Nov. 12 poster session at the annual American Heart Association meeting in Orlando.

"The idea of a blood test to help make a diagnosis of heart disease is very appealing," Ashley said. "But my bigger hope is for therapeutic potential, and given what we know about apelin levels changing a lot during heart failure, either blocking or enhancing this system may provide a treatment for heart failure."



The apelin-APJ signaling pathway’s role in cardiac health was discovered through straightforward techniques combined in such a way that made a previously unnoticed connection apparent. Researchers united Stanford’s long experience with cardiac-assist devices with the ability of microarrays to scan for the activity of thousands of genes at once. In the study, researchers looked at two different heart tissue samples from each patient. One sample came from patients suffering end-stage heart disease before any type of surgical intervention, and the second sample was taken after the same patients’ hearts had recovered with the help of artificial pumps known as left-ventricular assist devices, or LVADs.

The patients in this study relied upon LVADs for up to a year to pump their blood as they waited for an appropriate donor heart to become available for transplant. When the device was implanted, a small section of heart tissue had to be removed, which provided the "before" sample for the study. Once a donor heart arrived, the patient’s old heart became the "after" sample.

"By comparing the two states, the genes we are seeing show the differences between the patients at their worst and when their hearts have had a chance to recover for a bit," said Mary Chen, life science research assistant in cardiovascular medicine and the other lead author of the study. In other words, the things that get worse during heart failure improve with the aid of an LVAD.

Genes that change during the recovery process could provide valuable insight into the progression of heart disease because heart tissue after LVAD use approximates the patient’s healthy heart. The researchers screened matched samples from 11 male patients before and after their heart transplants using microarrays to test for the activity of more than 12,000 genes. Among the genes that changed greatly between the two states was one called BNP, already known to be the first marker of heart disease to date. While this provided some confirmation of their technique, far more intriguing was the discovery of a new pathway.

"Right at the top of our list was a gene that nobody had paid any attention to," said Ashley. "That was our first light bulb." He explained that the gene they found to be most active in the recovering heart was related to angiotensin - shown 20 years ago to be important in heart failure, leading to the class of drugs known as ACE inhibitors. The gene they found produces a receptor called APJ. The protein that combines with this receptor is apelin, which had been shown recently to be perhaps the most potent stimulator of heart contractions ever discovered. Nobody had connected apelin and APJ to cardiac failure until now, the researchers said.

To provide further evidence that apelin played a role in heart disease, the Stanford team detected the protein in human blood. Once they determined what a normal range was, they looked at patients with various stages of heart disease and found that the level of apelin in a person’s blood reflected the condition of their heart determined by standard methods. They further showed that apelin is located in the lining of the blood vessels, but it signals to the receptor APJ in the heart.



Other Stanford researchers who contributed to this presentation are Alicia Deng, life science research assistant in cardiovascular medicine; Philip Tsao, PhD, assistant professor of research in cardiovascular medicine; and Thomas Quertermous, MD, the William G. Irwin Professor in Cardiovascular Medicine. This work was supported by the Donald W. Reynolds Cardiovascular Clinical Research Center at Stanford.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Mitzi Baker at 650-725-2106 (mitzibaker@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at 650-723-6912 (mamalone@stanford.edu)

Mitzi Baker | EurekAlert!
Further information:
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>