Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Procedure cures atrial fibrillation

13.11.2003


Radio waves ’zap’ tiny areas of heart muscle



An innovative procedure completely cures the overwhelming majority of patients with the most common form of irregular heartbeat, by stopping haywire electrical signals in areas of heart muscle and some of the veins that connect to it.

In several presentations at the American Heart Association’s Scientific Sessions 2003, and in a new paper in the Nov. 12 issue of the AHA journal Circulation, heart rhythm specialists from the University of Michigan Cardiovascular Center report their dramatic success in treating atrial fibrillation patients using a technique called radiofrequency catheter ablation.


The reports show that more than 85 percent of patients with intermittent AF were cured after a single session of catheter ablation, and no longer required medications to stabilize their heartbeat and cut their risk of clotting and strokes. Complication rates were extremely low.

"In all, we have treated more than 500 patients in the last three years and have achieved very favorable results in these patients," says cardiologist Hakan Oral, M.D., lead author of the Circulation paper and the U-M presentations at AHA. "It’s still a technically challenging procedure, but we hope to continue to simplify and improve it, and train others to perform it."

Catheter ablation aims to counteract irregular electrical impulses in heart muscle by delivering tiny bursts of intense radiofrequency waves to the areas of disorganized electrical activity. The radio wave "zap" heats the target areas of tissue, a process called ablation, but spares nearby tissue.

The catheters that record electrical signals in the tissue and deliver the radiofrequency energy are carefully inserted through the groin of a sedated patient, and wind through the major blood vessels and into the heart. Then, the catheter head pokes through the septum that divides the heart vertically, and enters the left atrium.

Depending on which areas will be targeted for ablation, doctors guide the tiny devices into position and deliver the radiofrequency pulses with painstaking precision in patterns that resemble dotted lines and circles. Then, they remove the catheter from the body, and monitor the patient overnight.

Recently, Oral says, the technique has been greatly enhanced by the development of new ablation strategies, and the ability to make three-dimensional digital maps of the heart and its electrical signals.

Of the few centers in the world performing catheter ablation, the U-M may be one of the most experienced and the most successful. But Oral hopes the technique can spread to other centers to help as many patients as possible. Oral will conduct a "how-to" session for other heart rhythm specialists at the AHA meeting, and the U-M team has welcomed many doctors to watch them performing the technique in Michigan.

Oral and Fred Morady, M.D., the U-M cardiologist who is senior author on the paper, hope the new results their team is publishing and presenting will help convince others in their field of the technique’s worth in tackling an otherwise difficult-to-treat condition. They especially point to the increased success they’ve had by ablating areas of the left atrium wall, rather than just the juncture between the pulmonary veins and the left atrium.

More than 2.2 million Americans have AF, and 160,000 more are diagnosed each year. In addition to causing heart palpitations, fatigue and pain that can be debilitating, the condition can quintuple a person’s risk of stroke, because of blood clots that form in the irregularly beating chambers of the heart. AF can also cause heart enlargement.

The Circulation paper is a prospective randomized trial involving 80 patients with the paroxysmal, or intermittent, form of AF, all of whom had experienced symptoms for years.

Ever since Michel Hassaguerre, M.D. and his colleagues in Bordeaux, France, first described how AF is initiated by electrical impulses that originate in the pulmonary veins, ablation attempts have primarily focused on electrical disconnection of the pulmonary veins from the left atrium. However, another approach proposed by Carlo Pappone, M.D., in Milan, Italy, suggested that higher efficacy might be possible via ablation within the left atrium, to encircle the pulmonary veins.

It was not clear which approach would be best. So, Oral and his colleagues randomized patients to undergo ablation in one of two ways. Some had it at the junction (ostia) between the pulmonary veins and the left atrium (a procedure called segmental ostial ablation or SOA). Others had a left atrial ablation procedure that was modified by Oral and his colleagues to include lines of ablation in the left atrium in addition to encircling the ostia (a procedure called left atrial catheter ablation or LACA).

Six months after treatment, 67 percent of the SOA patients were symptom-free without medication, compared with 88 percent of the LACA patients. Only one patient had a complication.

The results will help settle the controversy over which form of the technique is more reliable, Oral says, because it’s the first time SOA and LACA have been compared directly.

Catheter ablation for AF has been done for several years at a handful of centers. In addition to treating patients with paroxysmal AF, the U-M team treats patients with the much more debilitating and harder-to-treat form of the disorder called persistent AF.

At AHA, the U-M team will report the results of their efforts based on data gathered from more than 100 persistent AF patients. They treated 24 with the SOA technique, and the remaining patients underwent different forms of left atrial ablation. After six months, 25 percent of the SOA group, and more than 75 percent of the left atrial ablation group, were symptom-free without medication.

Also at AHA, the U-M team will report the results of their efforts to determine which patients undergoing catheter ablation for AF are more likely to develop atrial flutter, a related but different arrhythmia. They found that patients who had a history of atrial flutter, or who had inducible atrial flutter during the ablation procedure, were at risk of developing atrial flutter later on. Therefore, the authors suggest that in these patients, ablation with a certain region of the right atrium should be performed at the same time as the AF ablation, to minimize the risk of atrial flutter recurrence.

In all, Oral believes the new paper and presentations will help spread the word about the procedure. "I hope that patients and their treating physicians will become aware of the promise that catheter ablation holds, and that more centers will adopt the techniques," he says. "The more patients we can help, the better."



The U-M team’s research is funded by the Ellen and Robert Thompson Atrial Fibrillation Research Fund. Oral and Morady have served as consultants and speakers for Biosense-Webster, the company that makes the catheter that detects the electrical impulses in heart and vein tissue.

The other authors on the Circulation paper and AHA presentations are Christoph Scharf, M.D.; Aman Chugh, M.D., Burr Hall, M.D., Peter Cheung, M.D., Eric Good, D.O., Mehmet Ozaydin, M.D., Srikar Veerareddy, M.D., and Frank Pelosi, Jr., M.D.

References:
"Catheter Ablation for Paroxysmal Atrial Fibrillation: Segmental Pulmonary Vein Ostial Ablation Versus Left Atrial Ablation", Circulation, Vol. 108, Nov. 11, 2003, (published online in October)

Contact: Kara Gavin
At AHA meeting: cell 734-358-4910, or
Sally Pobojewski, pobo@umich.edu
At U-M: 734-764-2220

Kara Gavin | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>