Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen receptor-a disruption and vasodilation in coronary arteries

13.11.2003


In women, the risk of coronary heart disease increases significantly after menopause. Estrogen therapy, however, reduces the risk of cardiovascular disease in healthy postmenopausal women. Estrogen enhances endothelial function of the coronary arteries, and this may contribute to the cardioprotective effects of the female hormone.



The precise mechanisms that mediate the beneficial effects of estrogen on arterial endothelial function are incompletely understood. What is known is that the long-term effects of estrogen occur through activation of estrogen receptors and subsequent modulation of gene expression. Moreover, estrogen has also been shown to effect endothelium-dependent function via its effects on expression of endothelial nitric oxide synthase.

A New Study


Accordingly, a new study tests the hypothesis that estrogen modulates nitric oxide (NO)-dependent vasodilation of coronary arteries through its action on estrogen receptor-á (ER-á) to increase protein levels of endothelial nitric oxide synthase (eNOS) and Cu/Zn superoxide dismutase (SOD-1). The authors of the study, entitled “Regulation of Nitric Oxide-Dependent Vasodilatation in Coronary Arteries of Estrogen Receptor-á-Deficient Mice,” are Judy M. Muller-Delp, Kathryn E. Nichol, Texas A&M University, College Station, TX; and Dennis B. Lubahn, Brian J. Philips, Elmer M. Price, Edward M. Curran and M. Harold Laughlin, all of the University of Missouri, Columbia, MO. Their findings appear in the November 2003 edition of the American Journal of Physiology—Heart and Circulatory Physiology, one of 14 journals published each month by the American Physiological Society (APS).

Methodology

The investigators followed the primary procedures outlined below:

Animals: A total of 43 ERá knockout (ERáKO) mice and 36 wild-type (WT) female mice were used for the study of coronary artery vasomotor reactivity experiments. A total of 19 ERáKO and 18 WT females were used for immunoblot experiments. The average age of ERáKO mice was 16 + 1 wk. In WT mice, the average age was 15 + 1 wk. Within the WT group, 16 mice were ovariectomized. Sixteen ERáKO mice were ovariectomized. Experiments were performed beginning 10 days or more after ovariectomy. Estrogen treatment was initiated after 10 days of rest following the procedure. Seventeen of the ovariectomized ERáKO and eight of the ovariectomized WT mice received subcutaneous implants of a 17â-estradiol (E2) pellet; E2 treatment was continued for 14 days before the mice died and the coronary arteries were harvested.

Isolation of coronary arteries: The hearts were excised and placed in cold saline solution. With the use of a dissecting microscope, coronary arteries were dissected free of surrounding myocardium and cannulated. Arteries that exhibited leaks were discarded and the remainder pressurized. Spontaneous tone was ensured between the WT and ERáKO mice.

Evaluation of eNOS and SOD-1 protein: Coronary arteries were isolated from the myocardium, as noted above, and frozen in microcentrifuge tubes. Because there was insufficient protein in a single mouse coronary artery to allow measurement of protein content and still have sufficient sample to run on an SDS gel, it was necessary to pool samples of coronary arteries from three mice into one sample. The eNOS and SOD-1 protein content was determined by loading equal amounts of total artery protein from equal numbers of different groups on the same gel, allowing comparisons between groups on the same gel.

Solutions and drugs: Stock solutions of albumin and endothelin were used.

Data analysis: Tone development was expressed as the percent decrease from maximal diameter according to the formula: Tone (%) = [(Dm – D8)/Dm] x 100, where Dm is the maximal diameter recorded at 60 cmH2O and Ds is the steady-state diameter recorded after equilibration of the vessel. Vasodilatory responses were recorded as actual diameters and subsequently expressed as the percent of maximal relaxation, according to the formula Relaxation (%) = [(D8 – Db)/Dm – Db)] x 100, where Ds is recorded after each addition of the drug and Db is the initial baseline diameter recorded immediately before the first addition of the vasodilatory agent. A two-way repeated-measures ANOVA was used to detect differences between and within factors. Statistical significance was defined as P < 0.05.

Results

The primary findings of this study reveal that:
  • NO-mediated vasodilation was preserved in coronary arteries from ERáKO mice;

  • SOD-1 protein content increased in coronary arteries from ERáKO mice;

  • ovariectomy reduced NO-mediated vasodilation and protein levels for eNOS and SOD-1 in ERáKO mice; and

  • E2 supplementation restored NO-mediated vasodilation and protein content of eNOS and SOD-1 in ovariectomized ERáKO mice.

Conclusions and Discussion

Based on the above findings, the researchers conclude that NO-mediated dilation is preserved in ERáKO mice through compensatory activation of ER-á independent pathways. Further study is needed to determine whether modulation of endothelium-dependent, NO-mediated vasodilation in coronary arteries occurs through an ER-â pathway.


Source: November 2003 edition of the American Journal of Physiology—Heart and Circulatory Physiology.

Donna Krupa | APS
Further information:
http://www.the-aps.org/press/journal/21.htm

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>