Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Growth factor grows stem cells that help heal hearts


American Heart Association meeting report

A drug that stimulates bone marrow to produce stem cells helped regenerate damaged heart muscle in one of the first studies of its kind, according to a report presented at the American Heart Association’s Scientific Sessions 2003.

The drug, granulocyte colony stimulating factor (G-CSF), treats some forms of cancer. It stimulates bone marrow to produce the different types of blood cells, including white blood cells that can become depleted after disease or chemotherapy.

G-CSF might help repopulate the heart’s muscle cells, which in turn could help repair the damaged heart, said lead author Chris A. Glover, M.D.

"Research has shown that there are cells in the heart that come from bone marrow stem cells. We hypothesized increasing these cells after a heart attack may help the heart regenerate heart muscle cells, and this is supported by our results," said Glover, assistant professor of medicine at the University of Ottawa and the Ottawa Heart Institute in Ontario.

"The main limitation of this study is that it included only five patients and was not randomized. On the other hand, the study’s strengths are that it explores the use of a novel therapy, which is a simple treatment that any physician could use to improve the outlook for heart attack patients."

All five patients who received G-CSF had anterior wall heart attacks, also known as large heart attacks. They had emergency angioplasty, a procedure to open their vessels by inserting an inflatable balloon that compresses the plaque and restores blood flow.

"We wanted patients with large heart attacks in this study, since they have the most to benefit from a therapy that could regenerate the heart," Glover said.

Within two weeks of the patients’ heart attack, doctors injected G-CSF in the fatty skin layers once a day for four consecutive days.

Researchers measured CD34 cells, a marker of stem cells, to find out if the drug was stimulating stem cell growth. An increase in white blood cells indirectly indicates that G-CSF is working. After four days, blood cells increased about five-fold and CD34 cells increased about 10-fold. Before treatment and six weeks after treatment, researchers also measured left ventricular (LV) ejection fraction, which indicates how much blood the heart pumps out of its main chamber. They assessed blood flow and metabolism by positron emission tomography (PET) scan, which measures the heart’s contraction and indicates how much heart tissue is viable.

All five patients were free of side effects or heart-related complications at six weeks’ follow-up. Also at six weeks, ejection fraction went from 27 percent to 35 percent, and the patients had a considerable metabolic (viable tissue) recovery from 59 percent to 75 percent.

Co-authors are R.S. Beanlands; R.A. deKemp; K. Mostert; L. Garrard and H. Atkins.

Carole Bullock | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>