Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth factor grows stem cells that help heal hearts

12.11.2003


American Heart Association meeting report



A drug that stimulates bone marrow to produce stem cells helped regenerate damaged heart muscle in one of the first studies of its kind, according to a report presented at the American Heart Association’s Scientific Sessions 2003.

The drug, granulocyte colony stimulating factor (G-CSF), treats some forms of cancer. It stimulates bone marrow to produce the different types of blood cells, including white blood cells that can become depleted after disease or chemotherapy.


G-CSF might help repopulate the heart’s muscle cells, which in turn could help repair the damaged heart, said lead author Chris A. Glover, M.D.

"Research has shown that there are cells in the heart that come from bone marrow stem cells. We hypothesized increasing these cells after a heart attack may help the heart regenerate heart muscle cells, and this is supported by our results," said Glover, assistant professor of medicine at the University of Ottawa and the Ottawa Heart Institute in Ontario.

"The main limitation of this study is that it included only five patients and was not randomized. On the other hand, the study’s strengths are that it explores the use of a novel therapy, which is a simple treatment that any physician could use to improve the outlook for heart attack patients."

All five patients who received G-CSF had anterior wall heart attacks, also known as large heart attacks. They had emergency angioplasty, a procedure to open their vessels by inserting an inflatable balloon that compresses the plaque and restores blood flow.

"We wanted patients with large heart attacks in this study, since they have the most to benefit from a therapy that could regenerate the heart," Glover said.

Within two weeks of the patients’ heart attack, doctors injected G-CSF in the fatty skin layers once a day for four consecutive days.

Researchers measured CD34 cells, a marker of stem cells, to find out if the drug was stimulating stem cell growth. An increase in white blood cells indirectly indicates that G-CSF is working. After four days, blood cells increased about five-fold and CD34 cells increased about 10-fold. Before treatment and six weeks after treatment, researchers also measured left ventricular (LV) ejection fraction, which indicates how much blood the heart pumps out of its main chamber. They assessed blood flow and metabolism by positron emission tomography (PET) scan, which measures the heart’s contraction and indicates how much heart tissue is viable.

All five patients were free of side effects or heart-related complications at six weeks’ follow-up. Also at six weeks, ejection fraction went from 27 percent to 35 percent, and the patients had a considerable metabolic (viable tissue) recovery from 59 percent to 75 percent.


Co-authors are R.S. Beanlands; R.A. deKemp; K. Mostert; L. Garrard and H. Atkins.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>