Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better brain imaging helps surgeons avoid damage to language functions

12.11.2003


Advances in neurosurgery have opened the operating room door for an amazing array of highly invasive forms of brain surgery, but doctors and patients still face an incredibly important decision - whether to operate when life-saving surgery could irrevocably damage a patient’s ability to speak, read or even comprehend a simple conversation.


Jeff Ojemann/University of Washington
Improved techniques for the mapping of the brain’s language areas using functional magnetic resonance imaging (top) may replace much more invasive pre-surgery mapping techniques, such as electrocortical stimulation (bottom), which requires a patient to be awake and conversant while surgeons probe exposed brain areas in an effort to locate and map language-related functions.


Jeff Ojemann
Advances in fMRI brain mapping techniques provide neurosurgery teams with valuable information on the location of a patient’s language functions well before surgery begins, making pre-surgery testing more effective and improving odds of safer brain surgeries.



Now, researchers at Washington University in St. Louis are developing a painless, non-invasive imaging technique that surgeons here already are using to better evaluate brain surgery risks and to more precisely guide operations so that damage to sensitive language areas is avoided.

The breakthrough holds the promise of safer surgeries for the nearly 200,000 Americans diagnosed with brain tumors each year. It also may significantly improve odds of success in an increasingly common epilepsy surgery in which large damaged sections of a patient’s temporal brain lobe are removed in an effort to alleviate severe seizures.


The Washington University mapping technique, which captures functional magnetic resonance images (fMRI) of the brain as patients performs simple language functions, has the potential to replace or improve upon two much more invasive and dangerous brain mapping techniques, both of which are now commonly used before or during most brain surgeries.

In a forthcoming article in the journal Epilepsy & Behavior, a Washington University research team presents a recent brain surgery case in which their fMRI brain mapping technique helped pinpoint the unusual location of language centers in a patient with a long history of severe epileptic seizures, including information critical to the surgery’s success.

Other research has utilized fMRI testing to define language areas in the brain, but the Washington University technique has proven to be especially effective due to the integration of a "false memory" word processing test that asks patients to remember a list of rapidly presented words with related meanings or similar rhyming patterns.

"These word processing tasks were chosen because direct comparisons of meaning and rhyme processing have been shown to elicit robust activation in two distinct regions of the brain, each of which are critical to language function, "said study co-author Kathleen McDermott, an assistant professor of psychology in Arts & Sciences at Washington University.

During the fMRI test, patients are provided with a list of logically related words, such as doze, pillow, rest and dream, and later asked if a non-presented but related word, such as sleep, had been part of the presented list. Most falsely recall that the word sleep had been part of the original list. Another version of the test asks patients to recall if a particular word was presented among a list of closely rhyming words.

Use of both the rhyming and meaning-related lists is important because studies show the brain typically relies on separate and distinct regions to process each of these tasks. Specifically, the processing of word meanings activates a brain region known as Wernicke’s area, while the processing of word rhymes activates another important language center known as Broca’s area, McDermott said,

McDermott and colleagues at Washington University have spent nearly a decade using similar lists of related words to study false memories, a phenomenon in which normal cognitive processes cause people to remember things that never actually happened. In previous studies, McDermott used fMRI to document which areas of the brain are involved in the creation of false memories; eventually, it became clear that fMRI images of false memory processing also offered very robust and detailed representations of language centers, and that these results could be obtained on an individual patient basis.

McDermott and Jason Watson, a research associate in psychology, began working with neurosurgeons and radiologists at the Washington University School of Medicine who were struggling to find more effective ways of using fMRI to pinpoint language centers in patients scheduled for radical brain surgeries. She worked closely with Jeffrey Ojemann, a Washington University neurosurgeon whose father had pioneered development of electrocortical stimulation (ECS) mapping, the current "gold standard" for pre-surgery mapping of language and memory functions in the brain of an individual patient.

McDermott, Ojemann and colleagues hope that non-invasive fMRI testing will one day be advanced enough to provide a painless alternative to ECS mapping, a daunting procedure that requires patients to be awake and conversant while surgeons systematically probe exposed brain areas in an effort to locate and map language-related functions. The operation, which involves the removal of a softball-size section of the skull, sometimes fails because patients are unable to respond coherently during the operation.

The Washington University fMRI mapping technique also offers improvements over the Wada (WAH-dah) test, another commonly used method of locating critical language and memory regions of the brain prior to surgery.

Named for its originator, Dr. Juhn Wada, the procedure relies on the fact that language functions in most people tend to be concentrated in either the right or left hemisphere of the brain. The test, which requires a catheter to be threaded into a brain artery, allows surgeons to look for changes in language function as alternate hemispheres of the brain are put to sleep. The Wada test provides a rough idea of which hemisphere has primary control of language, but does nothing to pinpoint specific location of language areas within the hemisphere; it also provides inconclusive results when language functions are shared across hemispheres.

The Wada test is usually among the first given to epilepsy patients considering surgery to remove a section of the brain that appears responsible for triggering seizures. If a Wada test indicates that the seizures are coming from a hemisphere in which critical language and memory skills are located, surgeons may recommend further ECS testing to pinpoint how much of the temporal lobe can be removed without risking significant damage to language skills. Similar evaluations are conducted to determine if brain tumors can be removed without damaging areas of the brain critical to language and memory.

Recently, McDermott, Watson and Ojemann began administering the fMRI false memory test to patients scheduled for brain surgery and then comparing their results to those from the ECS and Wada techniques. Their study includes post-surgery evaluation to determine if language skills were actually damaged during surgery.

In the case presented in the journal Epilepsy & Behavior, the Wada test failed to identify whether the patient’s language functions were dominantly located in either the left or right brain hemisphere. Fluent speech was observed no matter which hemisphere was put to sleep. The fMRI testing revealed a non-typical, dual hemisphere location of language centers, but also indicated that few of these functions were located in the left frontal lobe, the area believed to be responsible for the patient’s seizures. ECS testing was performed just prior to surgery and its results mirrored those obtained painlessly through the fMRI test. Similar results have been confirmed in seven other patients.

"The findings from Wada, fMRI and ECS were confirmed by a lack of language impairment after left frontal lobectomy for seizures," McDermott said. "This case illustrates that fMRI can precisely map cortical language networks in epileptic patients and that fMRI may be used to help interpret laterality results provided by the Wada procedure."

Other members of research team and study co-authors include Monica V. Baciu, research associate in the department of radiology; Richard D. Wetzel, professor of psychiatry, neurology and neurological surgery; Hrayr P. Attarian, assistant professor of neurology; and Christopher J. Moran, professor of neuroradiology; all of the Washington University School of Medicine.

The study was supported by grants from the McDonnell Pew Program in Cognitive Neuroscience, the McDonnell Center for Higher Brain Function and the National Institutes of Mental Health (NIH/NINDS Grant NS41272).

Note: Baicu, a visiting researcher at Washington University, is based at Pierre Mendes-France University in Grenoble, France. Ojemann recently relocated to the University of Washington in Seattle. Attarian is now based at the University of Vermont School of Medicine.

Gerry Everding | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/494.html

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>