Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite lipids against asthma or diabetes

11.11.2003


Dutch research has demonstrated that lipids from the parasite schistosoma can inhibit human immune responses. This property makes the lipids interesting for a possible new treatment of diseases such as asthma and diabetes where the immune system responds inappropriately.



During her doctoral research, Desiree van der Kleij discovered that lipids from the parasite schistosoma steer the development of the immune system in a certain direction. Cells from the innate immune system, so-called dendritic cells, respond to these lipids. During this response these cells can initiate the development of so-called regulatory T-cells. These regulatory T-cells subsequently suppress the activity of other cells in the immune system.

The researcher discovered that one of the lipids with this steering effect on dendritic cells contains a fatty acid that does not occur in humans. She also demonstrated that this specific lipid of the parasite activates a specific receptor on dendritic cells. Once the receptor had been blocked, it was found that regulatory T-cells no longer developed after dendritic cells had been stimulated with the parasite lipid.


Diseases such as diabetes and asthma are caused by inappropriate immune responses to certain substances. Molecules which can inhibit the immune responses, such as the lipids of schistosomes, could be used to suppress these errant responses. The use of lipids from schistosomes for this purpose will be investigated in a follow-up study funded by the Netherlands Organisation for Scientific Research.

In the immune system, dendritic cells detect the presence of pathogens in the body. These cells then direct the development of immune responses so that a type of immune response develops which is appropriate to combat the pathogen present. The pathogen could be a bacteria, but equally a virus or a parasite.

Schistosomes are parasitic worms. More than 200 million people worldwide are infected with the worm. The majority of these people live in Africa and South America. The worms can survive in their host for years. Although infected persons develop an immune response during an infection, the parasite significantly suppresses the activity of the immune system in people who are chronically infected with these worms. This suppression is probably caused by regulatory T-cells.

Lydie van der Meer | NWO
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>