Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow stem cells build new circulation to lungs

11.11.2003


American Heart Association meeting report



A bone marrow stem cell transplant restored circulation to injured blood vessels in animals with pulmonary hypertension, according to a study presented today at the American Heart Association’s Scientific Sessions 2003.

“This is a novel and exciting approach,” said Duncan Stewart, M.D., professor and director of cardiology at the University of Toronto and head of cardiology at St. Michael’s Hospital. Pulmonary arterial hypertension (PAH) is abnormally high blood pressure in the arteries between the heart and lungs. It is a progressive disease that can affect the arterioles and capillaries that supply blood to the lungs.


“PAH reduces the heart’s ability to pump blood through the lungs and gradually leads to heart failure. Today, we can achieve some improvement with drugs, but the treatment is palliative and can only delay death,” Stewart said.

Restoring blood flow to the lungs with a stem cell transplant in the pulmonary vessels may hold promise as a new treatment for PAH, Stewart said.

His team used endothelial progenitor cells. Endothelial cells form a thin lining in blood vessels, providing an interface between the vessel and blood. This lining, called the endothelium, regulates a host of basic processes, such as blood clotting and blood pressure.

“Our results show that endothelial progenitor cells from the bone marrow circulate in the bloodstream. We can use them to form new blood vessels or repair damaged ones,” Stewart said. Stewart and co-investigator Yidan Zhao, M.D., a research associate at the University of Toronto and St. Michael’s Hospital, removed vascular progenitor cells from rats’ bone marrow. The cells were cultured for five days, then injected into the pulmonary circulation of rats with PAH. A second group of rats with PAH received skin fibroblasts (cells), while a third group, which did not have PAH, were used as controls.

Right ventricular systolic blood pressure (the pressure when the heart contracts) was measured 21 days later. The systolic pressure of the untreated, normal rats was 26 millimeters of mercury (mm Hg). Rats with PAH had a systolic pressure of 47 mm Hg. Systolic pressure fell to 32 mm Hg in those treated with endothelial progenitor cells, and it was relatively unchanged (45 mm Hg) in control animals treated with skin fibroblasts.

In some experiments, the endothelial progenitor cells were labeled with a fluorescent marker. An imaging technique called fluorescent microangiography was used to look at these cells to determine if microcirculation in the pulmonary vessels had been restored.

“The cells could be seen engrafting into the microcirculation and forming tiny new blood vessels,” Zhao said. “In the treated rats, microcirculation in the lungs was restored to almost normal levels, while severe PAH was observed in untreated animals and those that received skin fibroblasts.”

The stem cell group also had a reduction in thickening of the heart wall. This indicated, that the cells were not only repairing the smaller vessels, but there were also improvements in larger vessels.

“We found a regenerative approach that could lead to a new clinical therapy for this devastating disease in the quite-near future,” he said.


Co-authors are Y. D. Zhao, M.D., Ph.D.; Y. Deng, M.D.; Q. Zhang M.D., Ph.D.; L. Kugathasan, B.Sc. and D.W. Courtman, Ph.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>