Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bone marrow stem cells build new circulation to lungs


American Heart Association meeting report

A bone marrow stem cell transplant restored circulation to injured blood vessels in animals with pulmonary hypertension, according to a study presented today at the American Heart Association’s Scientific Sessions 2003.

“This is a novel and exciting approach,” said Duncan Stewart, M.D., professor and director of cardiology at the University of Toronto and head of cardiology at St. Michael’s Hospital. Pulmonary arterial hypertension (PAH) is abnormally high blood pressure in the arteries between the heart and lungs. It is a progressive disease that can affect the arterioles and capillaries that supply blood to the lungs.

“PAH reduces the heart’s ability to pump blood through the lungs and gradually leads to heart failure. Today, we can achieve some improvement with drugs, but the treatment is palliative and can only delay death,” Stewart said.

Restoring blood flow to the lungs with a stem cell transplant in the pulmonary vessels may hold promise as a new treatment for PAH, Stewart said.

His team used endothelial progenitor cells. Endothelial cells form a thin lining in blood vessels, providing an interface between the vessel and blood. This lining, called the endothelium, regulates a host of basic processes, such as blood clotting and blood pressure.

“Our results show that endothelial progenitor cells from the bone marrow circulate in the bloodstream. We can use them to form new blood vessels or repair damaged ones,” Stewart said. Stewart and co-investigator Yidan Zhao, M.D., a research associate at the University of Toronto and St. Michael’s Hospital, removed vascular progenitor cells from rats’ bone marrow. The cells were cultured for five days, then injected into the pulmonary circulation of rats with PAH. A second group of rats with PAH received skin fibroblasts (cells), while a third group, which did not have PAH, were used as controls.

Right ventricular systolic blood pressure (the pressure when the heart contracts) was measured 21 days later. The systolic pressure of the untreated, normal rats was 26 millimeters of mercury (mm Hg). Rats with PAH had a systolic pressure of 47 mm Hg. Systolic pressure fell to 32 mm Hg in those treated with endothelial progenitor cells, and it was relatively unchanged (45 mm Hg) in control animals treated with skin fibroblasts.

In some experiments, the endothelial progenitor cells were labeled with a fluorescent marker. An imaging technique called fluorescent microangiography was used to look at these cells to determine if microcirculation in the pulmonary vessels had been restored.

“The cells could be seen engrafting into the microcirculation and forming tiny new blood vessels,” Zhao said. “In the treated rats, microcirculation in the lungs was restored to almost normal levels, while severe PAH was observed in untreated animals and those that received skin fibroblasts.”

The stem cell group also had a reduction in thickening of the heart wall. This indicated, that the cells were not only repairing the smaller vessels, but there were also improvements in larger vessels.

“We found a regenerative approach that could lead to a new clinical therapy for this devastating disease in the quite-near future,” he said.

Co-authors are Y. D. Zhao, M.D., Ph.D.; Y. Deng, M.D.; Q. Zhang M.D., Ph.D.; L. Kugathasan, B.Sc. and D.W. Courtman, Ph.D.

Carole Bullock | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>