Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow stem cells build new circulation to lungs

11.11.2003


American Heart Association meeting report



A bone marrow stem cell transplant restored circulation to injured blood vessels in animals with pulmonary hypertension, according to a study presented today at the American Heart Association’s Scientific Sessions 2003.

“This is a novel and exciting approach,” said Duncan Stewart, M.D., professor and director of cardiology at the University of Toronto and head of cardiology at St. Michael’s Hospital. Pulmonary arterial hypertension (PAH) is abnormally high blood pressure in the arteries between the heart and lungs. It is a progressive disease that can affect the arterioles and capillaries that supply blood to the lungs.


“PAH reduces the heart’s ability to pump blood through the lungs and gradually leads to heart failure. Today, we can achieve some improvement with drugs, but the treatment is palliative and can only delay death,” Stewart said.

Restoring blood flow to the lungs with a stem cell transplant in the pulmonary vessels may hold promise as a new treatment for PAH, Stewart said.

His team used endothelial progenitor cells. Endothelial cells form a thin lining in blood vessels, providing an interface between the vessel and blood. This lining, called the endothelium, regulates a host of basic processes, such as blood clotting and blood pressure.

“Our results show that endothelial progenitor cells from the bone marrow circulate in the bloodstream. We can use them to form new blood vessels or repair damaged ones,” Stewart said. Stewart and co-investigator Yidan Zhao, M.D., a research associate at the University of Toronto and St. Michael’s Hospital, removed vascular progenitor cells from rats’ bone marrow. The cells were cultured for five days, then injected into the pulmonary circulation of rats with PAH. A second group of rats with PAH received skin fibroblasts (cells), while a third group, which did not have PAH, were used as controls.

Right ventricular systolic blood pressure (the pressure when the heart contracts) was measured 21 days later. The systolic pressure of the untreated, normal rats was 26 millimeters of mercury (mm Hg). Rats with PAH had a systolic pressure of 47 mm Hg. Systolic pressure fell to 32 mm Hg in those treated with endothelial progenitor cells, and it was relatively unchanged (45 mm Hg) in control animals treated with skin fibroblasts.

In some experiments, the endothelial progenitor cells were labeled with a fluorescent marker. An imaging technique called fluorescent microangiography was used to look at these cells to determine if microcirculation in the pulmonary vessels had been restored.

“The cells could be seen engrafting into the microcirculation and forming tiny new blood vessels,” Zhao said. “In the treated rats, microcirculation in the lungs was restored to almost normal levels, while severe PAH was observed in untreated animals and those that received skin fibroblasts.”

The stem cell group also had a reduction in thickening of the heart wall. This indicated, that the cells were not only repairing the smaller vessels, but there were also improvements in larger vessels.

“We found a regenerative approach that could lead to a new clinical therapy for this devastating disease in the quite-near future,” he said.


Co-authors are Y. D. Zhao, M.D., Ph.D.; Y. Deng, M.D.; Q. Zhang M.D., Ph.D.; L. Kugathasan, B.Sc. and D.W. Courtman, Ph.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>