Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow stem cells build new circulation to lungs

11.11.2003


American Heart Association meeting report



A bone marrow stem cell transplant restored circulation to injured blood vessels in animals with pulmonary hypertension, according to a study presented today at the American Heart Association’s Scientific Sessions 2003.

“This is a novel and exciting approach,” said Duncan Stewart, M.D., professor and director of cardiology at the University of Toronto and head of cardiology at St. Michael’s Hospital. Pulmonary arterial hypertension (PAH) is abnormally high blood pressure in the arteries between the heart and lungs. It is a progressive disease that can affect the arterioles and capillaries that supply blood to the lungs.


“PAH reduces the heart’s ability to pump blood through the lungs and gradually leads to heart failure. Today, we can achieve some improvement with drugs, but the treatment is palliative and can only delay death,” Stewart said.

Restoring blood flow to the lungs with a stem cell transplant in the pulmonary vessels may hold promise as a new treatment for PAH, Stewart said.

His team used endothelial progenitor cells. Endothelial cells form a thin lining in blood vessels, providing an interface between the vessel and blood. This lining, called the endothelium, regulates a host of basic processes, such as blood clotting and blood pressure.

“Our results show that endothelial progenitor cells from the bone marrow circulate in the bloodstream. We can use them to form new blood vessels or repair damaged ones,” Stewart said. Stewart and co-investigator Yidan Zhao, M.D., a research associate at the University of Toronto and St. Michael’s Hospital, removed vascular progenitor cells from rats’ bone marrow. The cells were cultured for five days, then injected into the pulmonary circulation of rats with PAH. A second group of rats with PAH received skin fibroblasts (cells), while a third group, which did not have PAH, were used as controls.

Right ventricular systolic blood pressure (the pressure when the heart contracts) was measured 21 days later. The systolic pressure of the untreated, normal rats was 26 millimeters of mercury (mm Hg). Rats with PAH had a systolic pressure of 47 mm Hg. Systolic pressure fell to 32 mm Hg in those treated with endothelial progenitor cells, and it was relatively unchanged (45 mm Hg) in control animals treated with skin fibroblasts.

In some experiments, the endothelial progenitor cells were labeled with a fluorescent marker. An imaging technique called fluorescent microangiography was used to look at these cells to determine if microcirculation in the pulmonary vessels had been restored.

“The cells could be seen engrafting into the microcirculation and forming tiny new blood vessels,” Zhao said. “In the treated rats, microcirculation in the lungs was restored to almost normal levels, while severe PAH was observed in untreated animals and those that received skin fibroblasts.”

The stem cell group also had a reduction in thickening of the heart wall. This indicated, that the cells were not only repairing the smaller vessels, but there were also improvements in larger vessels.

“We found a regenerative approach that could lead to a new clinical therapy for this devastating disease in the quite-near future,” he said.


Co-authors are Y. D. Zhao, M.D., Ph.D.; Y. Deng, M.D.; Q. Zhang M.D., Ph.D.; L. Kugathasan, B.Sc. and D.W. Courtman, Ph.D.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>