Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find role RNA plays in progress of Alzheimer’s disease

11.11.2003


Researchers at Ohio State University have found new clues to how free radicals can contribute to the development of Alzheimer’s disease.


C. Glenn Lin



The study found that oxidation – a type of damage to cells caused by free radicals – can damage certain kinds of messenger RNA in the brain. That damage may be related to Alzheimer’s.

Messenger RNA (or mRNA) is important because it turns DNA’s genetic code into the proteins needed for healthy brain function. But in an Alzheimer’s brain, up to half of the mRNA are damaged by oxidation; these oxidized mRNAs may process proteins abnormally, which may contribute to neuronal death.


“We know that free radicals can damage DNA, but nobody had looked at the effect of free radicals on RNA," said C. Glenn Lin, the study’s lead author and an assistant professor of neuroscience at Ohio State. "When we looked for mRNA in the Alzheimer’s brain, we found significant amounts of oxidized mRNA in the frontal cortex, which is one of the main areas affected by the disease."

The researchers looked at the brains of deceased Alzheimer’s patients and found that only certain kinds of mRNA are susceptible to oxidative damage. There are many, some of which researchers have yet to discover, Lin said.

This is the first study to describe the specific types, or species, of mRNA oxidized in Alzheimer’s disease; until this point, researchers knew that the oxidation of mRNA played a role in Alzheimer’s disease, but they didn’t know which species were at fault.

Lin and Ohio State colleagues Xiu Shan and Hirofumi Tashiro, both with the department of neuroscience, reported their findings on November 10 in New Orleans at the annual Society for Neuroscience conference.

The researchers used tissue taken from the brains of 11 recently deceased Alzheimer’s patients (aged 65 to 86); seven age-matched controls; and two young control subjects (aged 22 and 49). Using a series of biochemical testing methods, they analyzed mRNA content from the hippocampus, frontal cortex and cerebellum of each person’s brain. They were looking for mRNA transcripts – replicas of DNA genetic code – to see if certain transcripts were more susceptible to oxidation.

The researchers also wanted to see if they would find the same level of mRNA oxidation in the brains of the age-matched and young controls to determine whether or not this level of mRNA oxidation was truly unique to Alzheimer’s disease.

Alzheimer’s disease first attacks the hippocampus, virtually destroying its ability to help regulate memory. Damage to the frontal cortex – an area important for cognition – follows. The cerebellum is usually unaffected in Alzheimer’s, Lin said.

The researchers found high levels of oxidative damage in the frontal cortex of only the Alzheimer’s patients’ brains. They also found that only certain mRNA species were oxidized.

"We were somewhat surprised to find that free radical damage wasn’t a random hit in the brain," Lin said. "But many of the oxidized mRNA species were related to genes already known to be associated with Alzheimer’s disease."

This oxidation appears to start early in the disease process, Lin said, and the disease progressively worsens as proteins continue to accumulate.

"Protein aggregation is one of the hallmark features of Alzheimer’s disease," Lin said. "We think that mRNA oxidation and subsequent protein accumulation may strongly interfere with the brain’s normal cellular processes, which may contribute to the onset and progression of Alzheimer’s."

Lin said he hopes that some day researchers will be able to pinpoint the exact kinds of mRNA transcripts that cause protein aggregation.
"That might help us figure out what kind of proteins in the cell go haywire at an early stage of Alzheimer’s," he said. "Then, if we can somehow block that process, perhaps we could reduce the progression of the disease."

The research was supported by grants from the National Institutes of Health and the Alzheimer’s Association.


Contact: C. Glenn Lin; (614) 688-5433; Lin.492@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/sfnad.htm

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>