Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find role RNA plays in progress of Alzheimer’s disease

11.11.2003


Researchers at Ohio State University have found new clues to how free radicals can contribute to the development of Alzheimer’s disease.


C. Glenn Lin



The study found that oxidation – a type of damage to cells caused by free radicals – can damage certain kinds of messenger RNA in the brain. That damage may be related to Alzheimer’s.

Messenger RNA (or mRNA) is important because it turns DNA’s genetic code into the proteins needed for healthy brain function. But in an Alzheimer’s brain, up to half of the mRNA are damaged by oxidation; these oxidized mRNAs may process proteins abnormally, which may contribute to neuronal death.


“We know that free radicals can damage DNA, but nobody had looked at the effect of free radicals on RNA," said C. Glenn Lin, the study’s lead author and an assistant professor of neuroscience at Ohio State. "When we looked for mRNA in the Alzheimer’s brain, we found significant amounts of oxidized mRNA in the frontal cortex, which is one of the main areas affected by the disease."

The researchers looked at the brains of deceased Alzheimer’s patients and found that only certain kinds of mRNA are susceptible to oxidative damage. There are many, some of which researchers have yet to discover, Lin said.

This is the first study to describe the specific types, or species, of mRNA oxidized in Alzheimer’s disease; until this point, researchers knew that the oxidation of mRNA played a role in Alzheimer’s disease, but they didn’t know which species were at fault.

Lin and Ohio State colleagues Xiu Shan and Hirofumi Tashiro, both with the department of neuroscience, reported their findings on November 10 in New Orleans at the annual Society for Neuroscience conference.

The researchers used tissue taken from the brains of 11 recently deceased Alzheimer’s patients (aged 65 to 86); seven age-matched controls; and two young control subjects (aged 22 and 49). Using a series of biochemical testing methods, they analyzed mRNA content from the hippocampus, frontal cortex and cerebellum of each person’s brain. They were looking for mRNA transcripts – replicas of DNA genetic code – to see if certain transcripts were more susceptible to oxidation.

The researchers also wanted to see if they would find the same level of mRNA oxidation in the brains of the age-matched and young controls to determine whether or not this level of mRNA oxidation was truly unique to Alzheimer’s disease.

Alzheimer’s disease first attacks the hippocampus, virtually destroying its ability to help regulate memory. Damage to the frontal cortex – an area important for cognition – follows. The cerebellum is usually unaffected in Alzheimer’s, Lin said.

The researchers found high levels of oxidative damage in the frontal cortex of only the Alzheimer’s patients’ brains. They also found that only certain mRNA species were oxidized.

"We were somewhat surprised to find that free radical damage wasn’t a random hit in the brain," Lin said. "But many of the oxidized mRNA species were related to genes already known to be associated with Alzheimer’s disease."

This oxidation appears to start early in the disease process, Lin said, and the disease progressively worsens as proteins continue to accumulate.

"Protein aggregation is one of the hallmark features of Alzheimer’s disease," Lin said. "We think that mRNA oxidation and subsequent protein accumulation may strongly interfere with the brain’s normal cellular processes, which may contribute to the onset and progression of Alzheimer’s."

Lin said he hopes that some day researchers will be able to pinpoint the exact kinds of mRNA transcripts that cause protein aggregation.
"That might help us figure out what kind of proteins in the cell go haywire at an early stage of Alzheimer’s," he said. "Then, if we can somehow block that process, perhaps we could reduce the progression of the disease."

The research was supported by grants from the National Institutes of Health and the Alzheimer’s Association.


Contact: C. Glenn Lin; (614) 688-5433; Lin.492@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/sfnad.htm

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>