Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find role RNA plays in progress of Alzheimer’s disease

11.11.2003


Researchers at Ohio State University have found new clues to how free radicals can contribute to the development of Alzheimer’s disease.


C. Glenn Lin



The study found that oxidation – a type of damage to cells caused by free radicals – can damage certain kinds of messenger RNA in the brain. That damage may be related to Alzheimer’s.

Messenger RNA (or mRNA) is important because it turns DNA’s genetic code into the proteins needed for healthy brain function. But in an Alzheimer’s brain, up to half of the mRNA are damaged by oxidation; these oxidized mRNAs may process proteins abnormally, which may contribute to neuronal death.


“We know that free radicals can damage DNA, but nobody had looked at the effect of free radicals on RNA," said C. Glenn Lin, the study’s lead author and an assistant professor of neuroscience at Ohio State. "When we looked for mRNA in the Alzheimer’s brain, we found significant amounts of oxidized mRNA in the frontal cortex, which is one of the main areas affected by the disease."

The researchers looked at the brains of deceased Alzheimer’s patients and found that only certain kinds of mRNA are susceptible to oxidative damage. There are many, some of which researchers have yet to discover, Lin said.

This is the first study to describe the specific types, or species, of mRNA oxidized in Alzheimer’s disease; until this point, researchers knew that the oxidation of mRNA played a role in Alzheimer’s disease, but they didn’t know which species were at fault.

Lin and Ohio State colleagues Xiu Shan and Hirofumi Tashiro, both with the department of neuroscience, reported their findings on November 10 in New Orleans at the annual Society for Neuroscience conference.

The researchers used tissue taken from the brains of 11 recently deceased Alzheimer’s patients (aged 65 to 86); seven age-matched controls; and two young control subjects (aged 22 and 49). Using a series of biochemical testing methods, they analyzed mRNA content from the hippocampus, frontal cortex and cerebellum of each person’s brain. They were looking for mRNA transcripts – replicas of DNA genetic code – to see if certain transcripts were more susceptible to oxidation.

The researchers also wanted to see if they would find the same level of mRNA oxidation in the brains of the age-matched and young controls to determine whether or not this level of mRNA oxidation was truly unique to Alzheimer’s disease.

Alzheimer’s disease first attacks the hippocampus, virtually destroying its ability to help regulate memory. Damage to the frontal cortex – an area important for cognition – follows. The cerebellum is usually unaffected in Alzheimer’s, Lin said.

The researchers found high levels of oxidative damage in the frontal cortex of only the Alzheimer’s patients’ brains. They also found that only certain mRNA species were oxidized.

"We were somewhat surprised to find that free radical damage wasn’t a random hit in the brain," Lin said. "But many of the oxidized mRNA species were related to genes already known to be associated with Alzheimer’s disease."

This oxidation appears to start early in the disease process, Lin said, and the disease progressively worsens as proteins continue to accumulate.

"Protein aggregation is one of the hallmark features of Alzheimer’s disease," Lin said. "We think that mRNA oxidation and subsequent protein accumulation may strongly interfere with the brain’s normal cellular processes, which may contribute to the onset and progression of Alzheimer’s."

Lin said he hopes that some day researchers will be able to pinpoint the exact kinds of mRNA transcripts that cause protein aggregation.
"That might help us figure out what kind of proteins in the cell go haywire at an early stage of Alzheimer’s," he said. "Then, if we can somehow block that process, perhaps we could reduce the progression of the disease."

The research was supported by grants from the National Institutes of Health and the Alzheimer’s Association.


Contact: C. Glenn Lin; (614) 688-5433; Lin.492@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/sfnad.htm

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>