Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic CPR device dramatically improves cardiac arrest survival in Stanford animal study

11.11.2003


A small, portable device greatly increases the chance of surviving sudden cardiac death by restoring blood pressure better than conventional cardiopulmonary resuscitation, according to a Stanford University School of Medicine animal study. Following restoration of heart function, most of the animals in the Stanford study also showed no neurological damage, which commonly results from even a momentary blood flow interruption to the brain.



To model what happens during abrupt loss of heart function, the researchers tested the device, marketed as the AutoPulse Resuscitation System by Revivant Corp., on pigs. They found that AutoPulse contributed to the survival of three-quarters of the animals, while none of the animals initially treated with conventional CPR survived. "What was even more astounding than the survival rate was that 88 percent of the surviving animals had normal brain function," said Mehrdad Rezaee, MD, PhD, clinical science research associate in the Department of Cardiovascular Medicine and director of interventional preclinical research at Stanford. Results of the study are to be presented Nov. 10 at the American Heart Association’s 76th annual Scientific Sessions in Orlando.

Although the AutoPulse is already commercially available in the United States, researchers wanted to investigate its overall effectiveness in reviving heart attack victims and also study its lasting benefit. Survival of a heart attack depends on maintaining blood flow to wash out the metabolic waste and move oxygenated blood to organs throughout the body. CPR is designed to artificially keep the blood flowing when the heart can no longer pump; the degree to which it is successful depends on how effectively CPR can squeeze, or compress, the chest wall surrounding the heart.


Researchers induced ventricular fibrillation, an electrical abnormality in the heart that precedes cardiac arrest, in 32 pigs. The animals were left without a pulse for eight minutes to simulate the average paramedic response time, after which they were treated with both the AutoPulse and standard manual CPR. One group received the AutoPulse first and the other received manual CPR first. The researchers found that the device restored blood pressure better than manual compressions and returned the hearts to pre-arrest condition in 73 percent of the animals treated with the device first. None of the animals first treated with conventional CPR survived.

The study confirmed that the device can help restore blood flow and pressure by mechanically producing chest compressions, researchers said. Unlike conventional CPR, the device can deliver 80 compressions per minute for up to an hour over a broader expanse of the chest than the concentrated area of a human hand.

"The impact is going to be much more than defibrillators found in airports and on planes," said Rezaee, senior author of the study. He explained that no expertise is needed to use this CPR device; its microprocessors automatically estimate the size of the person and calculate the force necessary to compress the chest wall by 20 percent, the optimal amount of pressure to keep blood flowing.

About 460,000 people each year suffer sudden cardiac arrest, 95 percent of whom die, Rezaee said. Blood flow must be restored as soon as possible - within minutes - to avoid lasting health consequences or death. In a typical emergency situation outside of a medical facility, it takes an average of eight minutes or longer for paramedics to arrive. Manual CPR does not provide enough depth of chest compression to adequately restore blood flow (only about 10 percent of normal) to reverse the damaging effects of heart stoppage. "Wherever a health-care professional would do manual CPR, a device like this could be better for the patient," said Rezaee.

Other Stanford researchers who contributed to the study include Fumiaki Ikeno, Hideaki Kaneda and Yoichiro Hongo, graduate students in the School of Medicine; Jennifer Lyons, life sciences research assistant in cardiovascular medicine; and Cristine Nolasco and Sascha Emami, life science technicians in cardiovascular medicine. The work was supported by Revivant Corp. None of the authors has a financial interest in Revivant.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>