Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic CPR device dramatically improves cardiac arrest survival in Stanford animal study

11.11.2003


A small, portable device greatly increases the chance of surviving sudden cardiac death by restoring blood pressure better than conventional cardiopulmonary resuscitation, according to a Stanford University School of Medicine animal study. Following restoration of heart function, most of the animals in the Stanford study also showed no neurological damage, which commonly results from even a momentary blood flow interruption to the brain.



To model what happens during abrupt loss of heart function, the researchers tested the device, marketed as the AutoPulse Resuscitation System by Revivant Corp., on pigs. They found that AutoPulse contributed to the survival of three-quarters of the animals, while none of the animals initially treated with conventional CPR survived. "What was even more astounding than the survival rate was that 88 percent of the surviving animals had normal brain function," said Mehrdad Rezaee, MD, PhD, clinical science research associate in the Department of Cardiovascular Medicine and director of interventional preclinical research at Stanford. Results of the study are to be presented Nov. 10 at the American Heart Association’s 76th annual Scientific Sessions in Orlando.

Although the AutoPulse is already commercially available in the United States, researchers wanted to investigate its overall effectiveness in reviving heart attack victims and also study its lasting benefit. Survival of a heart attack depends on maintaining blood flow to wash out the metabolic waste and move oxygenated blood to organs throughout the body. CPR is designed to artificially keep the blood flowing when the heart can no longer pump; the degree to which it is successful depends on how effectively CPR can squeeze, or compress, the chest wall surrounding the heart.


Researchers induced ventricular fibrillation, an electrical abnormality in the heart that precedes cardiac arrest, in 32 pigs. The animals were left without a pulse for eight minutes to simulate the average paramedic response time, after which they were treated with both the AutoPulse and standard manual CPR. One group received the AutoPulse first and the other received manual CPR first. The researchers found that the device restored blood pressure better than manual compressions and returned the hearts to pre-arrest condition in 73 percent of the animals treated with the device first. None of the animals first treated with conventional CPR survived.

The study confirmed that the device can help restore blood flow and pressure by mechanically producing chest compressions, researchers said. Unlike conventional CPR, the device can deliver 80 compressions per minute for up to an hour over a broader expanse of the chest than the concentrated area of a human hand.

"The impact is going to be much more than defibrillators found in airports and on planes," said Rezaee, senior author of the study. He explained that no expertise is needed to use this CPR device; its microprocessors automatically estimate the size of the person and calculate the force necessary to compress the chest wall by 20 percent, the optimal amount of pressure to keep blood flowing.

About 460,000 people each year suffer sudden cardiac arrest, 95 percent of whom die, Rezaee said. Blood flow must be restored as soon as possible - within minutes - to avoid lasting health consequences or death. In a typical emergency situation outside of a medical facility, it takes an average of eight minutes or longer for paramedics to arrive. Manual CPR does not provide enough depth of chest compression to adequately restore blood flow (only about 10 percent of normal) to reverse the damaging effects of heart stoppage. "Wherever a health-care professional would do manual CPR, a device like this could be better for the patient," said Rezaee.

Other Stanford researchers who contributed to the study include Fumiaki Ikeno, Hideaki Kaneda and Yoichiro Hongo, graduate students in the School of Medicine; Jennifer Lyons, life sciences research assistant in cardiovascular medicine; and Cristine Nolasco and Sascha Emami, life science technicians in cardiovascular medicine. The work was supported by Revivant Corp. None of the authors has a financial interest in Revivant.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>