Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune memory from smallpox vaccination lasts more 50 years, according to Emory research

11.11.2003


Immune memory after smallpox vaccination persists for at least 50 years in immunized individuals, according to research conducted by scientists at the Emory Vaccine Center and Emory University School of Medicine. This is good news, since the findings, published in the Nov. 15 issue of the Journal of Immunology, suggest that individuals vaccinated against smallpox prior to the end of the smallpox vaccination program in 1972 may still retain at least some protection against smallpox.



Rafi Ahmed, PhD, Georgia Research Alliance Eminent Scholar and director of the Emory Vaccine Center, was principal investigator of the research study, and Shane Crotty, PhD, formerly at Emory University School of Medicine and currently a faculty member at The La Jolla Institute for Allergy and Immunology, was first author. Other members of the research team included Emory microbiologist John Glidewell, Phil Felgner, and Luis Villarreal of the University of California, Irvine, and Huw Davies of King’s College London.

Although scientists have known that acute viral infections and vaccines produce two types of long-term immune memory that provide protection against disease, they are still learning the details of these immune mechanisms.


Using a new blood test they developed to assess human antigen-specific immunity, the Emory scientists measured memory B cell responses in individuals recently vaccinated with smallpox vaccine (DryVax), in unvaccinated individuals, and in individuals vaccinated between three months and 60 years earlier. The recently vaccinated group showed a significant virus-specific memory B cell response to vaccinia, while the unvaccinated individuals were negative for vaccinia virus-specific memory B cells. Vaccinia virus-specific B cells were detected in most of the previously vaccinated individuals in the study, including those vaccinated up to 60 years after vaccination.

The scientists found that virus-specific memory B cells initially declined after smallpox immunization, but then reached a plateau approximately ten times lower than their peak, where they remained stable for more than 50 years. Although there were significantly fewer memory B cells in the most recently vaccinated group compared to those vaccinated decades earlier, there was no significant change in B cell memory between 20 and 60 years after vaccination. In addition, individuals vaccinated against smallpox maintained anti-smallpox antibodies in their blood for at least 60 years after vaccination, with no indication of decline between 1 and 60 years.

In humoral immunity, the body’s first line of defense against infection is antibodies produced by B cells, which are the primary measure of immunity for most vaccines. Memory B cells are responsible for stimulating a rapid antibody response after re-exposure to infection. In cellular immunity, activated T cells kill specific virus-infected cells and also produce cytokines –– proteins that prevent the growth of viruses and make cells resistant to viral infection. Previous studies in mice by Dr. Ahmed have shown that B cell memory can persist even without re-exposure to viral antigens, but this had not yet been demonstrated in humans.

In order to test the functionality of the memory B cells, the scientists revaccinated a group of test subjects who had been vaccinated between 22 and 48 years earlier, and detected 20-fold increases in vaccinia-virus antibodies after the second vaccination. They also tested antibody response to a specific viral protein. In previously immunized individuals they detected an antibody response prior to booster immunization as well as a strong response four weeks after booster immunization. In newly vaccinated individuals, however, the antibody response to the specific viral protein was virtually undetectable.

"The fact that there was an antibody response to this viral protein in individuals vaccinated years earlier, but no response in recently vaccinated individuals, demonstrates the potency and value of maintaining a pool of memory B cells for decades after vaccination," notes Dr. Crotty. The researchers also measured vaccinia-virus-specific T cells, and found that although the level of T cells declined gradually over time, the cells still were present even decades after immunization in most study subjects.

"Immune memory to smallpox vaccination is an excellent benchmark to help us understand the mechanisms of good vaccines and also to understand the longevity and stability of immune memory in the absence of revaccination or disease," said Dr. Ahmed. "Our findings may be useful as decisions are made about re-instituting a smallpox vaccination program. And because smallpox has an incubation period of from 12 to 14 days, this provides a window of opportunity for memory B and T cells to expand and attack the infection before the onset of clinical disease."

Dr. Crotty said, "Our findings may help assist health authorities in their decision-making process about updates or changes to the smallpox vaccination program. Our work has not shown that these people would be protected, because that cannot be directly tested, and this is an important point. But, our study does show that people maintain immune memory against smallpox for many decades, and hopefully those levels of immune memory would provide at least some amount of protection against smallpox."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>