Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repetitive work tasks linked to bone damage

11.11.2003


While experts disagree on whether work tasks alone can be the exact cause of work-related musculoskeletal disorders (WMSD) such as carpal tunnel syndrome, a new study by researchers at Temple University proves that a highly repetitive work task, a risk factor for WMSD, does in fact cause bone damage.



"Because multiple factors play a role in the development of WMSD, including work tasks, home activities, and medical conditions such as diabetes or heart disease, we studied work tasks alone to isolate their impact," said Ann Barr, P.T., Ph.D., associate professor of physical therapy at Temple University and the study’s lead author. "This information is critical in helping industry and medicine establish workplace guidelines to prevent WMSD."

The study, "Repetitive, Negligible Force Reaching in Rats Induces Pathological Overloading of Upper Extremity Bones," published in the November 11 issue of the Journal of Bone and Mineral Research, is the third in a series conducted by a group of researchers at Temple University’s College of Health Professions and School of Medicine. "Our studies have shown a direct relationship between repetitive, low force movement and the inflammation of muscles, bone, nerves and connective tissue typical of WMSD," said Barr.


Work-related musculoskeletal disorders, including carpal tunnel syndrome, osteoarthritis and tendonitis, make up the majority (65 percent) of all occupational illnesses and cost industry tens of billions of dollars each year.

To show how the tissue damage caused symptoms of WMSDs, the researchers analyzed behaviors in rats such as decreased movement performance and task avoidance. "These behaviors increased according to the rate of repetition. The higher the repetition, the more severe the symptoms," said Barr.

While the researchers were not surprised by the nature of the tissue damage or the resulting behaviors, they were surprised by how early it began. "Carpal tunnel syndrome usually takes a long time to develop, yet we started seeing evidence of tissue damage within 3-6 weeks. This finding suggests that we may be able to intervene earlier in the development of the disorder and prevent further, more severe damage," said Barr.

Currently, the group is studying the effects of increasing or decreasing repetitive tasks on both tissue and behavior. They have also begun to determine markers of inflammation in patients with known WMSD.

"Future work will examine the long term effects of repetitive motion and the power of ergonomics or medication in preventing or lessening tissue damage," said Barr.

This research is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH), the National Institute of Occupational Safety and Health (CDC), the Foundation for Physical Therapy and Temple University.

In addition to Barr, the research team includes faculty members at Temple University’s College of Health Professions and School of Medicine: Mary Barbe, Ph.D., associate professor of physical therapy; Brian Clark, Ph.D., assistant professor of physical therapy; Steven Popoff, Ph.D., professor and chair of anatomy and cell biology; and Fayez Safadi, Ph.D., assistant professor of anatomy and cell biology.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>