Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repetitive work tasks linked to bone damage

11.11.2003


While experts disagree on whether work tasks alone can be the exact cause of work-related musculoskeletal disorders (WMSD) such as carpal tunnel syndrome, a new study by researchers at Temple University proves that a highly repetitive work task, a risk factor for WMSD, does in fact cause bone damage.



"Because multiple factors play a role in the development of WMSD, including work tasks, home activities, and medical conditions such as diabetes or heart disease, we studied work tasks alone to isolate their impact," said Ann Barr, P.T., Ph.D., associate professor of physical therapy at Temple University and the study’s lead author. "This information is critical in helping industry and medicine establish workplace guidelines to prevent WMSD."

The study, "Repetitive, Negligible Force Reaching in Rats Induces Pathological Overloading of Upper Extremity Bones," published in the November 11 issue of the Journal of Bone and Mineral Research, is the third in a series conducted by a group of researchers at Temple University’s College of Health Professions and School of Medicine. "Our studies have shown a direct relationship between repetitive, low force movement and the inflammation of muscles, bone, nerves and connective tissue typical of WMSD," said Barr.


Work-related musculoskeletal disorders, including carpal tunnel syndrome, osteoarthritis and tendonitis, make up the majority (65 percent) of all occupational illnesses and cost industry tens of billions of dollars each year.

To show how the tissue damage caused symptoms of WMSDs, the researchers analyzed behaviors in rats such as decreased movement performance and task avoidance. "These behaviors increased according to the rate of repetition. The higher the repetition, the more severe the symptoms," said Barr.

While the researchers were not surprised by the nature of the tissue damage or the resulting behaviors, they were surprised by how early it began. "Carpal tunnel syndrome usually takes a long time to develop, yet we started seeing evidence of tissue damage within 3-6 weeks. This finding suggests that we may be able to intervene earlier in the development of the disorder and prevent further, more severe damage," said Barr.

Currently, the group is studying the effects of increasing or decreasing repetitive tasks on both tissue and behavior. They have also begun to determine markers of inflammation in patients with known WMSD.

"Future work will examine the long term effects of repetitive motion and the power of ergonomics or medication in preventing or lessening tissue damage," said Barr.

This research is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH), the National Institute of Occupational Safety and Health (CDC), the Foundation for Physical Therapy and Temple University.

In addition to Barr, the research team includes faculty members at Temple University’s College of Health Professions and School of Medicine: Mary Barbe, Ph.D., associate professor of physical therapy; Brian Clark, Ph.D., assistant professor of physical therapy; Steven Popoff, Ph.D., professor and chair of anatomy and cell biology; and Fayez Safadi, Ph.D., assistant professor of anatomy and cell biology.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>