Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repetitive work tasks linked to bone damage

11.11.2003


While experts disagree on whether work tasks alone can be the exact cause of work-related musculoskeletal disorders (WMSD) such as carpal tunnel syndrome, a new study by researchers at Temple University proves that a highly repetitive work task, a risk factor for WMSD, does in fact cause bone damage.



"Because multiple factors play a role in the development of WMSD, including work tasks, home activities, and medical conditions such as diabetes or heart disease, we studied work tasks alone to isolate their impact," said Ann Barr, P.T., Ph.D., associate professor of physical therapy at Temple University and the study’s lead author. "This information is critical in helping industry and medicine establish workplace guidelines to prevent WMSD."

The study, "Repetitive, Negligible Force Reaching in Rats Induces Pathological Overloading of Upper Extremity Bones," published in the November 11 issue of the Journal of Bone and Mineral Research, is the third in a series conducted by a group of researchers at Temple University’s College of Health Professions and School of Medicine. "Our studies have shown a direct relationship between repetitive, low force movement and the inflammation of muscles, bone, nerves and connective tissue typical of WMSD," said Barr.


Work-related musculoskeletal disorders, including carpal tunnel syndrome, osteoarthritis and tendonitis, make up the majority (65 percent) of all occupational illnesses and cost industry tens of billions of dollars each year.

To show how the tissue damage caused symptoms of WMSDs, the researchers analyzed behaviors in rats such as decreased movement performance and task avoidance. "These behaviors increased according to the rate of repetition. The higher the repetition, the more severe the symptoms," said Barr.

While the researchers were not surprised by the nature of the tissue damage or the resulting behaviors, they were surprised by how early it began. "Carpal tunnel syndrome usually takes a long time to develop, yet we started seeing evidence of tissue damage within 3-6 weeks. This finding suggests that we may be able to intervene earlier in the development of the disorder and prevent further, more severe damage," said Barr.

Currently, the group is studying the effects of increasing or decreasing repetitive tasks on both tissue and behavior. They have also begun to determine markers of inflammation in patients with known WMSD.

"Future work will examine the long term effects of repetitive motion and the power of ergonomics or medication in preventing or lessening tissue damage," said Barr.

This research is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH), the National Institute of Occupational Safety and Health (CDC), the Foundation for Physical Therapy and Temple University.

In addition to Barr, the research team includes faculty members at Temple University’s College of Health Professions and School of Medicine: Mary Barbe, Ph.D., associate professor of physical therapy; Brian Clark, Ph.D., assistant professor of physical therapy; Steven Popoff, Ph.D., professor and chair of anatomy and cell biology; and Fayez Safadi, Ph.D., assistant professor of anatomy and cell biology.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>