Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repetitive work tasks linked to bone damage

11.11.2003


While experts disagree on whether work tasks alone can be the exact cause of work-related musculoskeletal disorders (WMSD) such as carpal tunnel syndrome, a new study by researchers at Temple University proves that a highly repetitive work task, a risk factor for WMSD, does in fact cause bone damage.



"Because multiple factors play a role in the development of WMSD, including work tasks, home activities, and medical conditions such as diabetes or heart disease, we studied work tasks alone to isolate their impact," said Ann Barr, P.T., Ph.D., associate professor of physical therapy at Temple University and the study’s lead author. "This information is critical in helping industry and medicine establish workplace guidelines to prevent WMSD."

The study, "Repetitive, Negligible Force Reaching in Rats Induces Pathological Overloading of Upper Extremity Bones," published in the November 11 issue of the Journal of Bone and Mineral Research, is the third in a series conducted by a group of researchers at Temple University’s College of Health Professions and School of Medicine. "Our studies have shown a direct relationship between repetitive, low force movement and the inflammation of muscles, bone, nerves and connective tissue typical of WMSD," said Barr.


Work-related musculoskeletal disorders, including carpal tunnel syndrome, osteoarthritis and tendonitis, make up the majority (65 percent) of all occupational illnesses and cost industry tens of billions of dollars each year.

To show how the tissue damage caused symptoms of WMSDs, the researchers analyzed behaviors in rats such as decreased movement performance and task avoidance. "These behaviors increased according to the rate of repetition. The higher the repetition, the more severe the symptoms," said Barr.

While the researchers were not surprised by the nature of the tissue damage or the resulting behaviors, they were surprised by how early it began. "Carpal tunnel syndrome usually takes a long time to develop, yet we started seeing evidence of tissue damage within 3-6 weeks. This finding suggests that we may be able to intervene earlier in the development of the disorder and prevent further, more severe damage," said Barr.

Currently, the group is studying the effects of increasing or decreasing repetitive tasks on both tissue and behavior. They have also begun to determine markers of inflammation in patients with known WMSD.

"Future work will examine the long term effects of repetitive motion and the power of ergonomics or medication in preventing or lessening tissue damage," said Barr.

This research is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH), the National Institute of Occupational Safety and Health (CDC), the Foundation for Physical Therapy and Temple University.

In addition to Barr, the research team includes faculty members at Temple University’s College of Health Professions and School of Medicine: Mary Barbe, Ph.D., associate professor of physical therapy; Brian Clark, Ph.D., assistant professor of physical therapy; Steven Popoff, Ph.D., professor and chair of anatomy and cell biology; and Fayez Safadi, Ph.D., assistant professor of anatomy and cell biology.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>