Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation kills new brain cells

10.11.2003


A research team at Lund University in Sweden attracted international attention a year ago by showing that new nerve cells can be generated in the brain after a stroke. However, most of these new nerve cells die rather soon. The same research team has now been able to show that an inflammation can lie behind the death of these new nerve cells, which instills hope for improved treatments for various brain disorders.



The new growth of nerve cells following epilepsy or stroke has been shown in animal studies to take place in two parts of the brain: the striatum and the hippocampus (a part that is of special importance for the memory, learning, and moods). These same areas are involved in the new formation of nerve cells in the human brain as well.

But many of the newly generated nerve cells perish rather quickly. The Lund research team, including Professor Olle Lindvall, Associate Professor Zaal Kokaia, and Doctor of Medicine Christine Ekdahl Clementson, have now been able to explain in an article in Proceedings of the National Academy of Sciences in the US that this is largely caused by an inflammatory process. They have demonstrated this in two ways: both by inducing an inflammation, which led to the death of nerve cells, and in reverse experiments by administering anti-inflammatory medicine, which reduced the number of nerve cells that died.


Inflammation of the brain occurs not only in connection with epilepsy and stroke but also in Alzheimer’s and other forms of dementia. In the future the new discoveries might lead to improved treatment of these diseases. But a great deal of research remains to be done.

“First we need to find out what function the newly formed nerve cells have. We know that the cells are of the same sort as those that are lost in a stroke, for example, but we don’t know whether the cells become fully functional to the point where they could help repair damage,” says Associate Professor Zaal Kokaia.

“We also want to learn more about the inflammatory process, which is extremely complicated. It triggers a number of different substances, and we would like to know which of them are causing cell death.”

The Lund scientists are going to pursue both of these leads in their further research.

This also has bearing on research into stem cells, which the Lund team is also working with, since transplanted cells probably also risk dying from inflammations that arise in the brain.

Ingela Björck | alfa
Further information:
http://v

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>