Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inflammation kills new brain cells

10.11.2003


A research team at Lund University in Sweden attracted international attention a year ago by showing that new nerve cells can be generated in the brain after a stroke. However, most of these new nerve cells die rather soon. The same research team has now been able to show that an inflammation can lie behind the death of these new nerve cells, which instills hope for improved treatments for various brain disorders.



The new growth of nerve cells following epilepsy or stroke has been shown in animal studies to take place in two parts of the brain: the striatum and the hippocampus (a part that is of special importance for the memory, learning, and moods). These same areas are involved in the new formation of nerve cells in the human brain as well.

But many of the newly generated nerve cells perish rather quickly. The Lund research team, including Professor Olle Lindvall, Associate Professor Zaal Kokaia, and Doctor of Medicine Christine Ekdahl Clementson, have now been able to explain in an article in Proceedings of the National Academy of Sciences in the US that this is largely caused by an inflammatory process. They have demonstrated this in two ways: both by inducing an inflammation, which led to the death of nerve cells, and in reverse experiments by administering anti-inflammatory medicine, which reduced the number of nerve cells that died.


Inflammation of the brain occurs not only in connection with epilepsy and stroke but also in Alzheimer’s and other forms of dementia. In the future the new discoveries might lead to improved treatment of these diseases. But a great deal of research remains to be done.

“First we need to find out what function the newly formed nerve cells have. We know that the cells are of the same sort as those that are lost in a stroke, for example, but we don’t know whether the cells become fully functional to the point where they could help repair damage,” says Associate Professor Zaal Kokaia.

“We also want to learn more about the inflammatory process, which is extremely complicated. It triggers a number of different substances, and we would like to know which of them are causing cell death.”

The Lund scientists are going to pursue both of these leads in their further research.

This also has bearing on research into stem cells, which the Lund team is also working with, since transplanted cells probably also risk dying from inflammations that arise in the brain.

Ingela Björck | alfa
Further information:
http://v

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>