Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Define New Cell Type That May Lead to Clues About Kaposi’s Sarcoma

10.11.2003


For years, the origin of Kaposi’s sarcoma (KS), a rare cancer that sometimes afflicts those infected with HIV, the AIDS virus, has puzzled researchers. Now, pathologists at Jefferson Medical College may be uncovering some of its secrets.



George Murphy, M.D., professor of pathology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Masatoshi Deguchi, M.D., visiting scientist from Tohuku University in Sendai, Japan, have created a mouse model that resembles an early form of KS. To accomplish this, they have grown and characterized a line of mouse skin cells in the laboratory that they believe are analogous to the cells that go awry early on in human KS.

The type of cell, termed a “dermal dendrocyte,” increases dramatically in number in tumors in early human KS, he says. When Dr. Murphy and his co-workers injected the dermal dendrocytes directly into normal mouse skin, the injected areas developed features similar to human KS.


The findings may lead to insights into the origins of other diseases, such as scleroderma, abnormal wound healing and a chronic form of graft-versus-host-disease involved in bone marrow transplantation.

Dr. Murphy and his group report their findings November 1 in the American Journal of Pathology.

According to Dr. Murphy, KS usually begins as one of many bruise-like areas on the skin that develops over time into tumors. KS may also affect internal organs, particularly in AIDS, and may be fatal.

Dermal dendrocytes – which have been known to exist only since 1985 – may play roles in wound healing or in the immune system. There is evidence for both.

“It’s interesting that in AIDS, it is occurring in the setting of immune disease, and involves an immune cell proliferating abnormally,” he says. What’s more, “KS can occur in areas of trauma,” he says, “and a wound healing cell might be proliferating abnormally” in such conditions.

When the dermal dendrocyte was first discovered in 1985, scientists found that the cell type contained a blood clotting factor. One explanation for this might be that the cell secretes the clotting factor to help form initial blood clots after injury and begin the healing process.

“The problem of understanding the biology and pathogenesis of KS and the dermal dendrocytes is that we’ve never had a purified cell line to study until now,” Dr. Murphy. “Now we have a cell line that is purified and expresses a blood clotting factor.”

“We now have an important tool to study KS not only experimentally because we have the early cell that we think contributes to the pathogenesis of the disease,” he says. “We also have the cell that we could never study in a purified manner before that might have a lot to do with abnormal wound healing and diseases such as scleroderma. It opens up a new area of inquiry.”

“It’s a potential mouse model for KS,” Dr. Murphy says. “What are missing are the other co-factors that would lead the evolution of the early lesion to the late lesion that kills patients.” These could include immunodeficiency, HIV or other viruses such as herpesvirus-8, which has been found in KS.

“Now, the mouse model that we have established can be studied by introducing these other factors and see if they can induce these early lesions to behave like the natural history of the human lesion.”

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17237

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>