Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Jefferson Scientists Define New Cell Type That May Lead to Clues About Kaposi’s Sarcoma


For years, the origin of Kaposi’s sarcoma (KS), a rare cancer that sometimes afflicts those infected with HIV, the AIDS virus, has puzzled researchers. Now, pathologists at Jefferson Medical College may be uncovering some of its secrets.

George Murphy, M.D., professor of pathology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Masatoshi Deguchi, M.D., visiting scientist from Tohuku University in Sendai, Japan, have created a mouse model that resembles an early form of KS. To accomplish this, they have grown and characterized a line of mouse skin cells in the laboratory that they believe are analogous to the cells that go awry early on in human KS.

The type of cell, termed a “dermal dendrocyte,” increases dramatically in number in tumors in early human KS, he says. When Dr. Murphy and his co-workers injected the dermal dendrocytes directly into normal mouse skin, the injected areas developed features similar to human KS.

The findings may lead to insights into the origins of other diseases, such as scleroderma, abnormal wound healing and a chronic form of graft-versus-host-disease involved in bone marrow transplantation.

Dr. Murphy and his group report their findings November 1 in the American Journal of Pathology.

According to Dr. Murphy, KS usually begins as one of many bruise-like areas on the skin that develops over time into tumors. KS may also affect internal organs, particularly in AIDS, and may be fatal.

Dermal dendrocytes – which have been known to exist only since 1985 – may play roles in wound healing or in the immune system. There is evidence for both.

“It’s interesting that in AIDS, it is occurring in the setting of immune disease, and involves an immune cell proliferating abnormally,” he says. What’s more, “KS can occur in areas of trauma,” he says, “and a wound healing cell might be proliferating abnormally” in such conditions.

When the dermal dendrocyte was first discovered in 1985, scientists found that the cell type contained a blood clotting factor. One explanation for this might be that the cell secretes the clotting factor to help form initial blood clots after injury and begin the healing process.

“The problem of understanding the biology and pathogenesis of KS and the dermal dendrocytes is that we’ve never had a purified cell line to study until now,” Dr. Murphy. “Now we have a cell line that is purified and expresses a blood clotting factor.”

“We now have an important tool to study KS not only experimentally because we have the early cell that we think contributes to the pathogenesis of the disease,” he says. “We also have the cell that we could never study in a purified manner before that might have a lot to do with abnormal wound healing and diseases such as scleroderma. It opens up a new area of inquiry.”

“It’s a potential mouse model for KS,” Dr. Murphy says. “What are missing are the other co-factors that would lead the evolution of the early lesion to the late lesion that kills patients.” These could include immunodeficiency, HIV or other viruses such as herpesvirus-8, which has been found in KS.

“Now, the mouse model that we have established can be studied by introducing these other factors and see if they can induce these early lesions to behave like the natural history of the human lesion.”

Steven Benowitz | TJUH
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>