Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Scientists Define New Cell Type That May Lead to Clues About Kaposi’s Sarcoma

10.11.2003


For years, the origin of Kaposi’s sarcoma (KS), a rare cancer that sometimes afflicts those infected with HIV, the AIDS virus, has puzzled researchers. Now, pathologists at Jefferson Medical College may be uncovering some of its secrets.



George Murphy, M.D., professor of pathology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Masatoshi Deguchi, M.D., visiting scientist from Tohuku University in Sendai, Japan, have created a mouse model that resembles an early form of KS. To accomplish this, they have grown and characterized a line of mouse skin cells in the laboratory that they believe are analogous to the cells that go awry early on in human KS.

The type of cell, termed a “dermal dendrocyte,” increases dramatically in number in tumors in early human KS, he says. When Dr. Murphy and his co-workers injected the dermal dendrocytes directly into normal mouse skin, the injected areas developed features similar to human KS.


The findings may lead to insights into the origins of other diseases, such as scleroderma, abnormal wound healing and a chronic form of graft-versus-host-disease involved in bone marrow transplantation.

Dr. Murphy and his group report their findings November 1 in the American Journal of Pathology.

According to Dr. Murphy, KS usually begins as one of many bruise-like areas on the skin that develops over time into tumors. KS may also affect internal organs, particularly in AIDS, and may be fatal.

Dermal dendrocytes – which have been known to exist only since 1985 – may play roles in wound healing or in the immune system. There is evidence for both.

“It’s interesting that in AIDS, it is occurring in the setting of immune disease, and involves an immune cell proliferating abnormally,” he says. What’s more, “KS can occur in areas of trauma,” he says, “and a wound healing cell might be proliferating abnormally” in such conditions.

When the dermal dendrocyte was first discovered in 1985, scientists found that the cell type contained a blood clotting factor. One explanation for this might be that the cell secretes the clotting factor to help form initial blood clots after injury and begin the healing process.

“The problem of understanding the biology and pathogenesis of KS and the dermal dendrocytes is that we’ve never had a purified cell line to study until now,” Dr. Murphy. “Now we have a cell line that is purified and expresses a blood clotting factor.”

“We now have an important tool to study KS not only experimentally because we have the early cell that we think contributes to the pathogenesis of the disease,” he says. “We also have the cell that we could never study in a purified manner before that might have a lot to do with abnormal wound healing and diseases such as scleroderma. It opens up a new area of inquiry.”

“It’s a potential mouse model for KS,” Dr. Murphy says. “What are missing are the other co-factors that would lead the evolution of the early lesion to the late lesion that kills patients.” These could include immunodeficiency, HIV or other viruses such as herpesvirus-8, which has been found in KS.

“Now, the mouse model that we have established can be studied by introducing these other factors and see if they can induce these early lesions to behave like the natural history of the human lesion.”

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17237

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>