Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic aberration helps explain variation in cystic fibrosis

10.11.2003


At the annual meeting of the Americal Society for Human Genetics in Los Angeles, Hopkins researchers will reveal the existence of specific short repeats of particular genetic building blocks in the gene at the root of cystic fibrosis, an inherited and often fatal lung disease. The researchers will also show how the repetitious pattern may help predict the disease’s severity.



Cystic fibrosis, or CF, stems from mutations in a gene called CFTR, short for cystic fibrosis transmembrane conductance regulator. When specific mutations appear in both copies of the gene, a sticky mucus builds up in the lungs, making breathing difficult and trapping bacteria that can cause serious and deadly infections.

One CFTR mutation, known as 5T, doesn’t always cause CF even when 5T and one of the traditional CF-causing mutations are present, a person can be disease-free. However, there’s no good way to predict whether the 5T combo will lead to disease or whether the person will be perfectly healthy.


In a presentation Thursday, Nov. 6, at 2 p.m., graduate student Tim Hefferon is scheduled to report that repeats of two sets of genetic building blocks thymine (T) by itself or a thymine-guanine (TG) combination appear in the CFTR gene in certain combinations that affect disease status. The TG repeat is typically 9 to 13 sets long, followed by a set of 5, 7 or 9 Ts, but some combinations are more likely than others. In particular, scientists have only observed combinations of T and TG repeats that add up to 27 to 31 building blocks. In theory, combinations could be as short as 23 and as long as 35 building blocks.

In an 8 a.m. presentation on Saturday, Nov. 8, graduate student Josh Groman is scheduled to report that the presence of a TG repeat in CFTR that is 12 or 13 sets long is much more common in people who have 5T and a CF-causing mutation and lung disease than those who have the mutations but are healthy. The researchers conclude that establishing the length of this TG repeat may help predict disease severity in people with 5T and another CFTR mutation. Roughly 10 percent of the general population has the 5T mutation, but the vast majority of those do not also have a traditional CF-causing mutation.

The principal investigator of these studies, Garry Cutting, Ph.D., professor of pediatrics and medicine at Johns Hopkins, directs Hopkins’ DNA Diagnostic Laboratory as well as the Cystic Fibrosis Foundation Genotyping Center at Johns Hopkins.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.ashg.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>