Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers discover natural brain chemical reduces effects of cocaine

10.11.2003


Researchers led by Jason Jaworski, PhD, and Michael Kuhar, PhD, both at the Yerkes National Primate Research Center at Emory University, have shown that CART peptide, a chemical that occurs naturally in both the rodent and human brain, reduces some effects of cocaine when additional amounts are administered to the region of the brain that is associated with reward and addiction. These findings, which appear online in the Journal of Pharmacology and Experimental Therapeutics and which will be presented on November 8 at the Society for Neuroscience meeting in New Orleans, suggest CART peptide receptors in the brain could be targets for developing medications to treat cocaine abuse.



For their study, Dr. Jaworski, a post-doctoral fellow, and Dr. Kuhar, chief of the Neuroscience Division at Yerkes and a Georgia Research Alliance Eminent Scholar, infused CART peptide into the nucleus accumbens (NA) of rodents to determine how it affects the increase of body movement, or locomotor activity, that is widely seen as one effect of psychostimulant drugs. The researchers observed that the cocaine-induced movement was reduced after the rodents received CART peptide. "This is the first study to demonstrate CART peptides in the nucleus accumbens hinder the effects of cocaine," said Dr. Jaworski. "Our findings open a door to develop potential treatment options for cocaine addiction."

When infused into other areas of the "pleasure pathway," the part of the brain in both rodents and humans that is activated when cocaine is administered, CART peptide has been shown to produce minimal psychostimulant-like effects. "Past studies have shown CART peptide is slightly cocaine-like in other areas of the brain, but nevertheless inhibits further stimulation from the drug," said Dr. Kuhar. "While additional research will be necessary, we have demonstrated the importance of CART peptide in combating or slowing down some of the effects of cocaine."


The researchers’ immediate next steps are to study CART peptide’s mechanism of action on the brain, as well as to determine if rodents who have been treated with CART peptide will administer less cocaine to themselves than those that have not been treated. They hope to determine how CART peptide produces the "anti-cocaine" effect so they can one day begin to develop treatments for cocaine addiction in humans.


The Yerkes National Primate Research Center of Emory University is one of eight National Primate Research Centers funded by the National Institutes of Health. The Yerkes Research Center is a multidisciplinary research institute recognized as a leader in biomedical and behavioral studies with nonhuman primates. Yerkes scientists are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Other research programs include cognitive development and decline, childhood visual defects, organ transplantation, the behavioral effects of hormone replacement therapy and social behaviors of primates. Leading researchers located worldwide seek to collaborate with Yerkes scientists.

Kelly Duncan | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>