Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers discover natural brain chemical reduces effects of cocaine

10.11.2003


Researchers led by Jason Jaworski, PhD, and Michael Kuhar, PhD, both at the Yerkes National Primate Research Center at Emory University, have shown that CART peptide, a chemical that occurs naturally in both the rodent and human brain, reduces some effects of cocaine when additional amounts are administered to the region of the brain that is associated with reward and addiction. These findings, which appear online in the Journal of Pharmacology and Experimental Therapeutics and which will be presented on November 8 at the Society for Neuroscience meeting in New Orleans, suggest CART peptide receptors in the brain could be targets for developing medications to treat cocaine abuse.



For their study, Dr. Jaworski, a post-doctoral fellow, and Dr. Kuhar, chief of the Neuroscience Division at Yerkes and a Georgia Research Alliance Eminent Scholar, infused CART peptide into the nucleus accumbens (NA) of rodents to determine how it affects the increase of body movement, or locomotor activity, that is widely seen as one effect of psychostimulant drugs. The researchers observed that the cocaine-induced movement was reduced after the rodents received CART peptide. "This is the first study to demonstrate CART peptides in the nucleus accumbens hinder the effects of cocaine," said Dr. Jaworski. "Our findings open a door to develop potential treatment options for cocaine addiction."

When infused into other areas of the "pleasure pathway," the part of the brain in both rodents and humans that is activated when cocaine is administered, CART peptide has been shown to produce minimal psychostimulant-like effects. "Past studies have shown CART peptide is slightly cocaine-like in other areas of the brain, but nevertheless inhibits further stimulation from the drug," said Dr. Kuhar. "While additional research will be necessary, we have demonstrated the importance of CART peptide in combating or slowing down some of the effects of cocaine."


The researchers’ immediate next steps are to study CART peptide’s mechanism of action on the brain, as well as to determine if rodents who have been treated with CART peptide will administer less cocaine to themselves than those that have not been treated. They hope to determine how CART peptide produces the "anti-cocaine" effect so they can one day begin to develop treatments for cocaine addiction in humans.


The Yerkes National Primate Research Center of Emory University is one of eight National Primate Research Centers funded by the National Institutes of Health. The Yerkes Research Center is a multidisciplinary research institute recognized as a leader in biomedical and behavioral studies with nonhuman primates. Yerkes scientists are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Other research programs include cognitive development and decline, childhood visual defects, organ transplantation, the behavioral effects of hormone replacement therapy and social behaviors of primates. Leading researchers located worldwide seek to collaborate with Yerkes scientists.

Kelly Duncan | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>