Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Direct link found between chronic inflammation, colon cancer

05.11.2003


Investigators in the A.B. Hancock Jr. Memorial Research Center at Vanderbilt have identified a type of DNA damage caused by chronic inflammation as a potential risk factor for colorectal cancer.



The findings, published this week in the early online edition of the website of the Proceedings of the National Academy of Science (www.pnas.org), shed more light on the role that inflammation might play in cancer and suggests that measurement of this type of DNA damage might be useful in assessment and management of a patient’s colorectal cancer risk.

"A number of studies have implicated chronic inflammation in the development of cancers, but the specific way that occurs is not clear," said Dr. Lawrence J. Marnett, Ph.D., director of the Hancock Research Center and the Vanderbilt Institute of Chemical Biology.


"These studies suggest a direct link between oxidative stress, like that seen in chronic inflammation, and genetic mutations that cause human disease."

The work reported in PNAS builds on years of research at Vanderbilt into how overproduction of the inflammation-causing enzyme cyclooxygenase-2 (COX-2) may contribute to cancer – and conversely, how aspirin-like drugs that block COX-2 might help treat or prevent cancer.

"When the body experiences oxidative stress, molecules called free radicals are produced, and these free radicals can damage cells – the cell membrane and the DNA," Marnett said.

The researchers examined a type of DNA damage caused by malondialdehye (MDA), a product of COX-2. The question they wanted to answer was whether the DNA damage would stop with the damaged cell or whether it would cause genetic abnormalities, or mutations, which would be replicated in future cell lines.

They built a DNA molecule that incorporated the MDA-caused damage and inserted that into mammalian kidney cells. After the cells divided, the DNA was recovered from the new cells and examined for mutations.

The researchers found that, indeed, the DNA damage had resulted in a specific type of genetic change called a "frameshift mutation." These mutations delete a small portion of DNA, effectively throwing off the "reading frame" through which the genes’ instructions are interpreted and resulting in a protein that doesn’t do what it is supposed to do.

Interestingly, these types of mutations are common in an inherited form of colon cancer, Hereditary Non-Polyposis Colon Cancer (HPNCC). This work suggests that these mutations, caused by inflammation and other oxidative stress, might also contribute to colorectal cancer.

Co-investigators in the research include Laurie A. VanderVeen, Muhammed F. Hashim and Yu Shyr, representing the Hancock Research Center, the VICB, the Vanderbilt-Ingram Cancer Center, the Vanderbilt Center for Molecular Toxicology and the Vanderbilt School of Medicine departments of Biochemistry and Preventive Medicine.

Cynthia Floyd Manley | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>