Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer can be reversed in laboratory mice, scientists report

04.11.2003


Findings provide new molecular drug targets, validate transgenic mouse models



Breast cancer researchers have demonstrated for the first time that it is possible to block genetic switches in mice that turn cancer on and off — thus preventing and even reversing breast cancer in the animals. The findings, reported Sunday morning at the 24th Congress of the International Association for Breast Cancer Research, suggest potential new molecular targets for drugs to prevent and potentially eradicate breast cancer in humans.

“It’s enormously gratifying,” said conference director Robert Cardiff, professor of pathology at UC Davis School of Medicine and Medical Center and an author of the research. “Our findings suggest paths forward that may help us alter the biological path of breast cancer and more successfully treat — and even potentially prevent — this cancer in humans.”


In new research reported by a team of scientists from Canada, Switzerland and UC Davis, investigators demonstrated that removing a single gene known as beta-1 integrin prevented or halted breast cancer growth in laboratory mice. Beta-1 integrin is a principal regulator of normal breast tissue growth and survival, but if the gene malfunctions, it can directly initiate breast tumors. The new work demonstrates that knocking out the beta-1 integrin gene prevents cancer-prone mice from developing breast tumors, and halts further tumor growth in mice that have already developed breast cancer.

“This study shows that it is absolutely essential to have the beta-1 integrin gene present in order for mammary gland tumors to develop. We now have a good target for biological drug development, and the challenge is to develop an agent that can block its activity,” said William J. Muller, professor of biochemistry at McGill University in Montreal and a lead investigator of the study.

In a related presentation, researchers from the University of Pennsylvania reported on a series of experiments using a novel mouse model of human breast cancer, one that enables scientists to turn oncogenes — genes that can cause cancer — on or off at will. A triggering agent, in this case the antibiotic doxycycline, throws the switch on or off. Scientists used the approach to test four oncogenes: c-myc, Neu, Wnt1, and v-Ha-Ras. When any one of the oncogenes was turned on, the transgenic mice developed extremely aggressive mammary tumors; in many cases, the tumors metastasized to the lungs. When the gene was turned off, many of the breast tumors — including many of the most aggressive and advanced cancers — regressed to the point that they no longer could be detected by physical examination, magnetic resonance imaging (MRI) or positron emission tomography (PET) scans.

“We’re extremely encouraged that we have been able to demonstrate in laboratory animals that we can make mammary cancers essentially disappear by reversing just one mutation,” said Lewis A. Chodosh, associate professor at the Abramson Family Cancer Research Center at the University of Pennsylvania and lead author of the study.
“This suggests that, with appropriate therapies that target the genes used in this study, we might be able to cause tumors to regress and improve substantially, even those that are quite advanced.”

However, even though many of the tumors in the transgenic mice went into complete remission, a substantial number of the cancers spontaneously recurred over periods of up to a year, Chodosh reported.

This finding is important since it replicates the natural history of human breast cancer — many women, after apparently successful treatment, harbor residual tumor cells that eventually give rise to tumor recurrences that ultimately may result in death. Some of these residual cells can remain for decades. No previous laboratory mouse model has successfully replicated this feature of human breast cancer cells.

“The next critical step is to figure out the mechanisms that some tumors use to escape these treatments,” Chodosh said. “We believe these mouse models will help us to do exactly that.”

Founded in the mid 1950s, the International Association for Breast Cancer Research is an international community of scientists focused on the important issues in modern breast cancer research. The 24th IABCR Congress, focused on preclinical research using mouse models of human breast cancer, is sponsored by UC Davis Cancer Center, the Office of Women’s Health of the U.S. Department of Health and Human Services, the California Breast Cancer Research Program, and the National Cancer Institute’s Mouse Models of Human Cancers Consortium and Specialized Programs of Research Excellence.

Claudia Morain | UC Davis Health System
Further information:
http://cme.ucdmc.ucdavis.edu/iabcr.htm
http://news.ucdmc.ucdavis.edu
http://cme.ucdmc.ucdavis.edu/Confrnce/IABCR/reversed.html

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>