Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer can be reversed in laboratory mice, scientists report

04.11.2003


Findings provide new molecular drug targets, validate transgenic mouse models



Breast cancer researchers have demonstrated for the first time that it is possible to block genetic switches in mice that turn cancer on and off — thus preventing and even reversing breast cancer in the animals. The findings, reported Sunday morning at the 24th Congress of the International Association for Breast Cancer Research, suggest potential new molecular targets for drugs to prevent and potentially eradicate breast cancer in humans.

“It’s enormously gratifying,” said conference director Robert Cardiff, professor of pathology at UC Davis School of Medicine and Medical Center and an author of the research. “Our findings suggest paths forward that may help us alter the biological path of breast cancer and more successfully treat — and even potentially prevent — this cancer in humans.”


In new research reported by a team of scientists from Canada, Switzerland and UC Davis, investigators demonstrated that removing a single gene known as beta-1 integrin prevented or halted breast cancer growth in laboratory mice. Beta-1 integrin is a principal regulator of normal breast tissue growth and survival, but if the gene malfunctions, it can directly initiate breast tumors. The new work demonstrates that knocking out the beta-1 integrin gene prevents cancer-prone mice from developing breast tumors, and halts further tumor growth in mice that have already developed breast cancer.

“This study shows that it is absolutely essential to have the beta-1 integrin gene present in order for mammary gland tumors to develop. We now have a good target for biological drug development, and the challenge is to develop an agent that can block its activity,” said William J. Muller, professor of biochemistry at McGill University in Montreal and a lead investigator of the study.

In a related presentation, researchers from the University of Pennsylvania reported on a series of experiments using a novel mouse model of human breast cancer, one that enables scientists to turn oncogenes — genes that can cause cancer — on or off at will. A triggering agent, in this case the antibiotic doxycycline, throws the switch on or off. Scientists used the approach to test four oncogenes: c-myc, Neu, Wnt1, and v-Ha-Ras. When any one of the oncogenes was turned on, the transgenic mice developed extremely aggressive mammary tumors; in many cases, the tumors metastasized to the lungs. When the gene was turned off, many of the breast tumors — including many of the most aggressive and advanced cancers — regressed to the point that they no longer could be detected by physical examination, magnetic resonance imaging (MRI) or positron emission tomography (PET) scans.

“We’re extremely encouraged that we have been able to demonstrate in laboratory animals that we can make mammary cancers essentially disappear by reversing just one mutation,” said Lewis A. Chodosh, associate professor at the Abramson Family Cancer Research Center at the University of Pennsylvania and lead author of the study.
“This suggests that, with appropriate therapies that target the genes used in this study, we might be able to cause tumors to regress and improve substantially, even those that are quite advanced.”

However, even though many of the tumors in the transgenic mice went into complete remission, a substantial number of the cancers spontaneously recurred over periods of up to a year, Chodosh reported.

This finding is important since it replicates the natural history of human breast cancer — many women, after apparently successful treatment, harbor residual tumor cells that eventually give rise to tumor recurrences that ultimately may result in death. Some of these residual cells can remain for decades. No previous laboratory mouse model has successfully replicated this feature of human breast cancer cells.

“The next critical step is to figure out the mechanisms that some tumors use to escape these treatments,” Chodosh said. “We believe these mouse models will help us to do exactly that.”

Founded in the mid 1950s, the International Association for Breast Cancer Research is an international community of scientists focused on the important issues in modern breast cancer research. The 24th IABCR Congress, focused on preclinical research using mouse models of human breast cancer, is sponsored by UC Davis Cancer Center, the Office of Women’s Health of the U.S. Department of Health and Human Services, the California Breast Cancer Research Program, and the National Cancer Institute’s Mouse Models of Human Cancers Consortium and Specialized Programs of Research Excellence.

Claudia Morain | UC Davis Health System
Further information:
http://cme.ucdmc.ucdavis.edu/iabcr.htm
http://news.ucdmc.ucdavis.edu
http://cme.ucdmc.ucdavis.edu/Confrnce/IABCR/reversed.html

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>