Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer can be reversed in laboratory mice, scientists report

04.11.2003


Findings provide new molecular drug targets, validate transgenic mouse models



Breast cancer researchers have demonstrated for the first time that it is possible to block genetic switches in mice that turn cancer on and off — thus preventing and even reversing breast cancer in the animals. The findings, reported Sunday morning at the 24th Congress of the International Association for Breast Cancer Research, suggest potential new molecular targets for drugs to prevent and potentially eradicate breast cancer in humans.

“It’s enormously gratifying,” said conference director Robert Cardiff, professor of pathology at UC Davis School of Medicine and Medical Center and an author of the research. “Our findings suggest paths forward that may help us alter the biological path of breast cancer and more successfully treat — and even potentially prevent — this cancer in humans.”


In new research reported by a team of scientists from Canada, Switzerland and UC Davis, investigators demonstrated that removing a single gene known as beta-1 integrin prevented or halted breast cancer growth in laboratory mice. Beta-1 integrin is a principal regulator of normal breast tissue growth and survival, but if the gene malfunctions, it can directly initiate breast tumors. The new work demonstrates that knocking out the beta-1 integrin gene prevents cancer-prone mice from developing breast tumors, and halts further tumor growth in mice that have already developed breast cancer.

“This study shows that it is absolutely essential to have the beta-1 integrin gene present in order for mammary gland tumors to develop. We now have a good target for biological drug development, and the challenge is to develop an agent that can block its activity,” said William J. Muller, professor of biochemistry at McGill University in Montreal and a lead investigator of the study.

In a related presentation, researchers from the University of Pennsylvania reported on a series of experiments using a novel mouse model of human breast cancer, one that enables scientists to turn oncogenes — genes that can cause cancer — on or off at will. A triggering agent, in this case the antibiotic doxycycline, throws the switch on or off. Scientists used the approach to test four oncogenes: c-myc, Neu, Wnt1, and v-Ha-Ras. When any one of the oncogenes was turned on, the transgenic mice developed extremely aggressive mammary tumors; in many cases, the tumors metastasized to the lungs. When the gene was turned off, many of the breast tumors — including many of the most aggressive and advanced cancers — regressed to the point that they no longer could be detected by physical examination, magnetic resonance imaging (MRI) or positron emission tomography (PET) scans.

“We’re extremely encouraged that we have been able to demonstrate in laboratory animals that we can make mammary cancers essentially disappear by reversing just one mutation,” said Lewis A. Chodosh, associate professor at the Abramson Family Cancer Research Center at the University of Pennsylvania and lead author of the study.
“This suggests that, with appropriate therapies that target the genes used in this study, we might be able to cause tumors to regress and improve substantially, even those that are quite advanced.”

However, even though many of the tumors in the transgenic mice went into complete remission, a substantial number of the cancers spontaneously recurred over periods of up to a year, Chodosh reported.

This finding is important since it replicates the natural history of human breast cancer — many women, after apparently successful treatment, harbor residual tumor cells that eventually give rise to tumor recurrences that ultimately may result in death. Some of these residual cells can remain for decades. No previous laboratory mouse model has successfully replicated this feature of human breast cancer cells.

“The next critical step is to figure out the mechanisms that some tumors use to escape these treatments,” Chodosh said. “We believe these mouse models will help us to do exactly that.”

Founded in the mid 1950s, the International Association for Breast Cancer Research is an international community of scientists focused on the important issues in modern breast cancer research. The 24th IABCR Congress, focused on preclinical research using mouse models of human breast cancer, is sponsored by UC Davis Cancer Center, the Office of Women’s Health of the U.S. Department of Health and Human Services, the California Breast Cancer Research Program, and the National Cancer Institute’s Mouse Models of Human Cancers Consortium and Specialized Programs of Research Excellence.

Claudia Morain | UC Davis Health System
Further information:
http://cme.ucdmc.ucdavis.edu/iabcr.htm
http://news.ucdmc.ucdavis.edu
http://cme.ucdmc.ucdavis.edu/Confrnce/IABCR/reversed.html

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>