Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Systolic better than diastolic or pulse blood pressure as indicator of mortality risk

04.11.2003


Rising systolic blood pressure is the clearest indicator for increased risk of death compared to other blood pressure measurements, according to researchers at the Johns Hopkins Bloomberg School of Public Health. Their evaluation of blood pressure measurements and mortality risk found that diastolic and pulse pressure measurements were weaker indicators of mortality risk and their effect was more dependent on age and other factors. The study appears in the November 4, 2003, edition of the Annals of Internal Medicine.



Systolic pressure, which is the higher number and first number in a blood pressure reading, measures the force of blood in the arteries as the heart contracts to push blood through the body. Doctors consider a systolic blood pressure greater than 120 mm Hg (millimeters of mercury) as unhealthy and can lead to heart disease, stroke and vascular diseases of the legs. Diastolic pressure, the lower number, measures the pressure as the heart relaxes to fill with blood. A diastolic pressure greater than 80 mm Hg is also considered unhealthy. Pulse pressure is the difference between the diastolic and systolic readings.

"There is some controversy in the medical community over whether the monitoring of systolic, diastolic, or pulse pressure should be the focus in treating hypertension. Our study shows that an increased systolic reading is most closely associated with an increased risk of death," said lead investigator Eliseo Guallar, MD, DrPH, an assistant professor in the School’s Department of Epidemiology.


The study included 7,830 white and African American adults age 30 to 74 that took part in the Second National Health and Nutrition Examination Survey (NHANES II) from 1976 to 1992. All of the participants were free of an obvious heart disease. Blood pressure was measured three times at enrollment. Of the 1,588 participants who died, 582 died of cardiovascular disease.

Dr. Guallar and his colleagues studied the effects of high systolic and diastolic blood pressure simultaneously and found a direct and consistent correlation between increased systolic blood pressure and an increased risk of death from cardiovascular disease and for all other causes among all of the study participants. Increased diastolic pressure over 80 mm Hg was also associated with an increased risk of death. However, for people under 65, the risk of death remained the same for diastolic reading of 80 mm Hg or lower. For participants over 65 years of age, the risk of death increased with low diastolic pressure.

The researchers found a complex association between pulse pressure and mortality. Increasing pulse pressure caused by increased systolic pressure was associated with an increased risk of mortality. Increased pulse pressure caused by increased diastolic pressure could be associated with increased risk, decreased risk, and no change in the risk of mortality.

"Pulse pressure alone, without appropriate attention to systolic and diastolic blood pressure components, is an inadequate indicator of mortality risk," said Dr. Guallar.


"Systolic Blood Pressure, Diastolic Blood Pressure, and Pulse Pressure: An Evaluation of Their Joint Effect on Mortality" was written by Roberto Pastor-Barriuso, PhD; José R. Banegas, MD, PhD; Javier Damián, MD, PhD; Lawrence J. Appel, MD, MPH; and Eliseo Guallar, MD, MPH.

Funding was provided by the Instituto de Salud Carlos III, Madrid, Spain. Study investigators work at the National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Universidad Autónoma de Madrid, Spain; and Johns Hopkins Medical Institutions.

Kenna Brigham | EurekAlert!
Further information:
http://www.jhsph.edu/
http://www.jhsph.edu/Press_Room

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>